Jinbao Li, Wujie Shi. On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups ... P. 269-275

MSC: 20D05, 20D60

DOI: 10.21538/0134-4889-2021-27-4-269-275

Full text

This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.

In this note we provide some counterexamples for the conjecture of Moretó on finite simple groups, which says that any finite simple group  $G$ can be determined in terms of  its order $|G|$ and the number of elements of order $p$, where $p$ the largest prime divisor of $|G|$.  A new characterization of all sporadic simple groups and alternating groups  is given.  Some related conjectures are also discussed.

Keywords: Finite simple groups, quantitative characterization, the largest prime divisor


1.   Anabanti C.S. A counterexample to Zarrin’s conjecture on sizes of finite nonabelian simple groups in relation to involution sizes. Arch. Math., 2019, vol. 112, no. 3, pp. 225–226. doi: 10.1007/s00013-018-1265-y 

2.   Anabanti C.S., Hammer S., Okoli N.C. An infinitude of counterexamples to Herzog’s conjecture on involutions in simple groups. Communications in Algebra, 2021, vol. 49, no. 4, pp. 1415–1421. doi: 10.1080/00927872.2020.1836563 

3.   Bi J.X. Characterization of alternating groups by orders of normalizers of Sylow subgroups. Algebra Colloq., 2001, vol. 8, no. 3, pp. 249–256.

4.   Cao H.P., Shi W.J. Pure quantitative characterization of finite projective special unitary groups. Sci. China Ser. A-Math., 2002, vol. 45, no. 6, pp. 761–772. doi: 10.1360/02ys9083 

5.   Chen G.Y. On Thompson’s conjecture. J. Algebra, 1996, vol. 185, no. 1, pp. 184–193. doi: 10.1006/jabr.1996.0320 

6.   Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of finite groups. Oxford: Clarendon Press, 1985, 252 p. ISBN: 0198531990 .

7.   Herzog Marcel. On the classification of finite simple groups by the number of involutions. Proc. Am. Math. Soc., 1979, vol. 77, no. 3, pp. 313–314. doi: 10.2307/2042177 

8.   Khosravi A., Khosravi B. Two new characterizations for sporadic simple groups. Pure Math. Appl., 2005, vol. 16, no. 3, pp. 287–293.

9.   Malinowska I.A. Finite groups with few normalizers or involutions. Arch. Math., 2019, vol. 112, no. 5, pp. 459–465. doi: 10.1007/s00013-018-1290-x 

10.   Moretó A. The number of elements of prime order. Monatsh. Math., 2018, vol. 186, no. 1, pp. 189–195. doi: 10.1007/s00605-017-1021-6 

11.   Robinson D.J.S. A course in the theory of groups. NY; Heidelberg; Berlin: Springer-Verlag, 1982, 481 p. ISBN: 0387906002 .

12.   Shi W.J. A new characterization of the sporadic simple groups. In: Group Theory — Proc. Singapore Group Theory Conf. 1987, Berlin; NY: Walter de Gruyter, 1989, ISBN: 0899254063 , pp. 531–540.

13.   Shi W.J., Bi J.X. A characteristic property for each finite projective special linear group. In: Kovacs L.G. (ed.), Groups–Canberra 1989. Lecture Notes in Mathematics, vol. 1456, Berlin; Heidelberg: Springer, 1990, pp. 171–180. doi: 10.1007/BFb0100738 

14.   Shi W.J., Bi J.X. A characterization of Suzuki-Ree groups. Sci. China, Ser. A, 1991, vol. 34, no. 1, pp. 14–19.

15.   Shi W.J., Bi J.X. A new characterization of the alternating groups. Southeast Asian Bull. Math., 1992, vol. 16, no. 1, pp. 81–90.

16.   Shi W.J. The pure quantitative characterization of finite simple groups (I). Prog. Nat. Sci., 1994, vol. 4, pp. 316–326.

17.   Thompson J.G. Personal communication. January 4, 1988.

18.   Vasil’ev A.V., Grechkoseeva M.A., Mazurov V.D. Characterization of the finite simple groups by spectrum and order. Algebra Logic, 2009, vol. 48, no. 6, pp. 385–409. doi: 10.1007/s10469-009-9074-9 

19.   Williams J.S. Prime graph components of finite groups. J. Algebra, 1981, vol. 69, no. 2, pp. 487–513. doi: 10.1016/0021-8693(81)90218-0 

20.   Xu M.C., Shi W.J. Pure quantitative characterization of finite simple groups $^2D_n(q)$ and $D_l(q)$ ($l$ odd). Algebra Colloq., 2003, vol. 10, no. 3, pp. 427–443.

21.   Zarrin M. A counterexample to Herzog’s conjecture on the number of involutions. Arch. Math., 2018, vol. 111, no. 4, pp. 349–351. doi: 10.1007/s00013-018-1195-8 

22.   Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv., 2009, vol. 6, pp. 1–12.

Received November 14, 2020

Revised February 28, 2021

Accepted April 5, 2021

Funding Agency: The project was partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202001303) and sponsored by Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0511).

Jinbao Li, Department of Mathematics, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China, e-mail: leejinbao25@163.com

Wujie Shi (Corresponding author), Department of Mathematics, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China; School of Mathematics, Suzhou University, Suzhou 215006, P. R. China, shiwujie@outlook.com

Cite this article as: Jinbao Li, Wujie Shi. On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 269–275.


Цзиньбао Ли, Вуджи Ши. О некоторых гипотезах, связанных с числовой характеризацией конечных неабелевых простых групп

В заметке приведены контрпримеры к гипотезе Морето, которая утверждает, что любая простая группа $G$ может быть охарактеризована своим порядком и количеством элементов порядка $p$, где $p$ - наибольший простой делитель порядка группы. Предложена новая характеризация всех спорадических простых групп и знакопеременных групп. Обсуждаются некоторые связанные гипотезы.

Ключевые слова: конечные простые группы, числовая характеризация, наибольший простой делитель