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ON SOME CONJECTURES RELATED TO QUANTITATIVE

CHARACTERIZATIONS OF FINITE NONABELIAN SIMPLE GROUPS1

Jinbao Li and Wujie Shi

In this note we provide some counterexamples for the conjecture of Moretó on finite simple groups, which

says that any finite simple group G can be determined in terms of its order |G| and the number of elements

of order p, where p the largest prime divisor of |G|. A new characterization of all sporadic simple groups and

alternating groups is given. Some related conjectures are also discussed.

Keywords: Finite simple groups, quantitative characterization, the largest prime divisor.

Цзиньбао Ли, Вуджи Ши. О некоторых гипотезах, связанных с числовой характеризацией

конечных неабелевых простых групп.

В заметке приведены контрпримеры к гипотезе Морето, которая утверждает, что любая простая груп-

па G может быть охарактеризована своим порядком и количеством элементов порядка p, где p — наиболь-

ший простой делитель порядка группы. Предложена новая характеризация всех спорадических простых

групп и знакопеременных групп. Обсуждаются некоторые связанные гипотезы.
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1. Introduction

All groups considered in this paper are finite and simple groups always mean finite nonabelian
simple groups.

For a finite group G, let π(G) be the set of all prime divisors dividing the order of G and let
|G| and πe(G) denote the order of G and the set of all element orders of G, respectively. For a
positive number k, denote by G(k) the set of all elements of order k in G. It is well known that |G|
and πe(G) are two of the most important quantitative invariants for G. In 1987, the second author
proposed the following conjecture (see [12]).

Conjecture 1.1. Let G be a group and S be a finite simple group. Then G ∼= S if and only if

πe(G) = πe(S) and |G| = |S|.

J.G.Thompson said that this would certainly be a nice theorem (see [17], personal communication,
January 4, 1988) if Shi’s conjecture is true. From 1987 to 2003, the authors of [4; 12–16;20] proved
that this conjecture is correct for all finite simple groups except Bn, Cn and Dn (n even). At the
end of 2009, the authors of [18] proved Shi’s conjecture for the remaining difficult cases. Thus,
this conjecture has been proved and becomes a theorem, that is, all finite simple groups can be
determined by their orders and the sets of their element orders (briefly, ‘two orders’).

Recently, A. Moretó in [10] investigated the influence of the number of elements of order p in
a given group G with p ∈ π(G), and characterized some simple groups from this perspective. He
showed that Ap and L2(p) are basically determined just by the number of elements of order p,
where p is the largest prime divisor of the order of the group satisfying some additional conditions.
Furthermore, Moretó posed the following conjecture.

1This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.
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Conjecture 1.2. Let S be a finite simple group and p the largest prime divisor of |S|. If G is

a finite group with the same number of elements of order p as S and |G| = |S|, then G ∼= S.

In this note we first provide three counterexamples for the above conjecture.

Example 1.3. Let S = A8
∼= L4(2) and G = L3(4). Then we have |S| = |G| and 7 is the largest

prime in π(S) = π(G). By [6], we have that both S and G contain 27 · 32 · 5 elements of order 7.
But L3(4) is not isomorphic to A8.

Example 1.4. Let S = O7(3) and G = S6(3). We have |S| = |G| = 29 · 39 · 5 · 7 · 13 and p = 13
is the largest prime dividing both the orders of S and G. Similarly, we may conclude from [6] that

G and S have the same number of elements of order 13.

Example 1.5. Let S = S4(3) ∼= U4(2). Let A be a group of order 4, B be an elementary abelian

group of order 24 and C be an elementary abelian group of order 34. Let D be a cyclic group of order

5 such that D acts trivially on A and acts fixed-point-freely on B and C, and set G = (A×B×C)⋊D.

Then we have |S| = |G| and |S(5)| = |G(5)|, which shows that S is not uniquely determined by its

order and number of elements of order 5.

Although Moretó’s conjecture is not true in general, we can show that this conjecture holds
for several classes of simple groups. For example, invoking Theorem 3.2 in [8] by A.Khosravi,
B.Khosravi, it is easy to deduce that Conjecture 1.2 holds for sporadic simple groups. In fact, if G
is a group and S is a sporadic simple groups satisfy the hypothesis of Conjecture 1.2, then by [6],
one can compute the number of elements of order p, denoted by |G(p)|, where p is the largest prime
in π(G) = π(S). Let P be a Sylow p-subgroup of G. Then P is of order p and

|G : NG(P )| =
|G(p)|

p− 1
.

Therefore Theorem 3.2 of [8] implies that Moretó’s conjecture holds for sporadic simple groups.
We also conclude that this conjecture is valid for alternating groups An except n = 8, 10 by

the following result of J.X.Bi in [3]. For a group G, Bi proved that if |G| = |An| and NG(R) and
NAn

(S) have the same order, where R and S are the Sylow p-subgroups of G and An, respectively,
with p the largest prime not exceeding n and n 6= 8, 10, then G ∼= An (see [3, Theorem 1.2]). We
prove the following theorem.

Theorem 1.6. Suppose that a group G fulfills the conditions of Conjecture 1.2 with S = An

for n ≥ 5. Then

(1) If n 6= 8, 10, then G ∼= S.

(2) If S = A8, then G ∼= A8 or L3(4).
(3) If S = A10, then G ∼= A10 or G ∼= J2 × Z(G), where Z(G) is a cyclic group of order 3.

Note that in Conjecture 1.2, for a given simple group S, the largest prime p in π(S) and the
number of elements of order p in S play an important role in recognition of S. On the other hand,
almost 40 years ago, M.Herzog in [7] investigated the influence of the number of involutions on
the structure of simple groups and proved that many classes of simple groups are characterized by
the numbers of their involutions. Furthermore, Herzog conjectured in [7] that if two simple groups
have the same number of involutions, then they have the same order. However, this conjecture is
not true in general and in [21], M. Zarrin provided a counterexample as follows. Let G = L3(4)
and S = S4(3). Then, with notation as above, we have |G(2)| = |S(2)| = 315, i.e, both L3(4) and
S4(3) have 315 elements of order 2. Zarrin also in [21] put forward the following conjecture: If S is a
nonabelian simple group and G is a group such that |G(2)| = |S(2)| and |G(p)| = |S(p)| for some odd
prime divisor p, then |G| = |S|. Later on, Zarrin’s conjecture and its related topics were discussed
in C. S.Anabanti [1] and I.A.Malinowska [9], respectively. In [1], Anabanti disproved Zarrin’s
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conjecture by the following counterexample. Let G = L4(3) and S = L3(9). Then |G(2)| = |S(2)|
and |G(13)| = |S(13)|, but it is clear that |G| 6= |S|. More recently, Anabanti et al in [2] provided
infinitely many counterexamples to the conjecture of Herzog mentioned above in the foregoing
argements and moreover fourteen new counterexamples to Zarrin’s conjecture were also given.

Now it is natural to ask whether or not any nonabelian simple group can be determined by
the conditions in Moretó’s conjecture together with the number of involutions. However, this does
not hold in general. For example, take G = A8 and S = L3(4), which are not isomorphic. Then
|G| = |S|, |G(2)| = |S(2)| and |G(7)| = |S(7)|, where 7 is the largest prime divisor dividing the
orders of G and S. For other counterexamples mentioned above, we have the following result.

Proposition 1.7. Let S ∈ {L4(3), L3(9), O7(3), S6(3)} and G be a group such that |G| = |S|
and |G(p)| = |S(p)| with p the largest prime dividing the order of G. Then

(1) If S = L4(3), then G ∼= S.

(2) If S ∈ {O7(3), S6(3)}, then G ∈ {O7(3), S6(3)}. Furthermore, if |G(2)| = |S(2)| is required,

then G ∼= S.

(3) If S = L3(9), then G ∼= S or L4(3) × Z(G), where Z(G) is a cyclic group of order 7. In

addition, if G ∼= L4(3)× Z(G), then we also have |G(2)| = |S(2)|.

Suggested by this as well as Theorem 1.6 and Anabanti’s result in [1], we have the following
conjecture, which strengthens the conditions of Moretó’s conjecture.

Conjecture 1.8. Let G be a group and S be a finite simple group. Then G ∼= S if and only if

|G| = |S| and for every prime p ∈ π(G) = π(S), G and S have the same number of elements of

order p .

2. Preliminary

In this section, we collect some elementary facts which are useful in our proof.
For a group G, define its prime graph (or the Gruenberg–Kegel graph) Γ(G) as follows: the

vertices are the primes dividing the order of G, two vertices p and q are adjacent if and only if G
contains an element of order pq (see [19]). Denote the connected components of the prime graph
of G by T (G) = {πi(G)|1 6 i 6 t(G)}, where t(G) is the number of the prime graph connected
components of G. If the order of G is even, assume that the prime 2 is always contained in π1(G).
A simple group whose order has exactly n distinct prime divisors is called a simple Kn-group. In
addition, for a group G, we call G a 2-Frobenius group if G has a normal series 1 ⊳ H ⊳ K ⊳ G such
that K and G/H are Frobenius groups with kernels H and K/H respectively. For other notation
and terminologies mentioned in this paper, the reader is referred to [6] if necessary.

Lemma 2.1. Let G be a group with more than one prime graph connected components. Then

G is one of the following:

(i) a Frobenius or 2-Frobenius group;

(ii) G has a normal series 1 E H E K E G, where H is a nilpotent π1-group, K/H is a

nonabelian simple group and G/K is a π1-group such that |G/K| divides the order of Out(K/H).
Besides, for i ≥ 2, πi(G) is also a connected component of Γ(K/H).

Proof. It follows straightforward from Theorem A, Lemmas 2-3 and Proposition 1 in [19].

Lemma 2.2. Suppose that G is a Frobenius group of even order and H, K are the Frobenius

kernel and a Frobenius complement of G, respectively. Then t(G) = 2, T (G) = {π(H), π(K)} and G
has one of the following structures:

(i) 2 ∈ π(H) and all Sylow subgroups of K are cyclic;
(ii) 2 ∈ π(K), H is an abelian group, K is a solvable group, the Sylow subgroups of K of odd

orders are cyclic groups and the Sylow 2-subgroups of K are cyclic or generalized quaternion groups ;
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(iii) 2 ∈ π(K), H is an abelian group, and there exists a normal subgroup K0 in K such that

|K : K0| ≤ 2 and K0 = M × SL(2, 5), where M is a group such that (|M |, 2 × 3 × 5) = 1 and all

Sylow subgroups of M are cyclic.

Proof. This is Lemma 1.6 in [5].

Lemma 2.3. Let G be a 2-Frobenius group of even order. Then t(G) = 2 and G has a normal

series 1 E H E K E G such that π(K/H) = π2, π(H) ∪ π(G/K) = π1, the order of G/K divides

the order of Aut(K/H), and both G/K and K/H are cyclic. Especially, |G/K| < |K/H| and G is

soluble.

Proof. This is Lemma 1.7 in [5].

The following lemma is well-known (see [11, Theorem 3.3.20]).

Lemma 2.4. Let R = R1 × · · · ×Rk, where Ri is a direct product of ni isomorphic copies of a

nonabelian simple group Hi, and Hi and Hj are not isomorphic if i 6= j. Then

Aut(R)∼= Aut(R1)× · · · × Aut(Rk) and Aut(Ri)∼= (Aut(Hi))≀Sni
.

Moreover,

Out(R)∼= Out(R1)× · · · × Out(Rk) and Out(Ri)∼= (Out(Ri))≀Sni
.

3. Proof of Main Results

Now we first proceed to prove Theorem 1.6.

Proof of Theorem 1.6. (1) Let G be a group satisfying the hypothesis and p be the largest
prime dividing the order of An with n 6= 8, 10. Then |G|p = |An|p = p and |G(p)| = |An(p)|.
Therefore G and An have the same number of Sylow p-subgroups and so G ∼= An by Bi’s result in [3].

(2) Suppose that |G| = |A8| = 26 · 32 · 5 · 7 and |G(7)| = |A8(7)| = 27 · 32 · 5. Let P be a
Sylow 7-subgroup of G. Then NG(P ) is of order 3 · 7. If NG(P ) = CG(P ), then G has a normal
7-complement L. Then it is easy to see that G has a Hall {5, 7}-subgroup QP , where Q is a Sylow
5-subgroup of L. Thus, Q ≤ NG(P ), a contradiction. Hence, CG(P ) = P , which implies that Γ(G) is
not connected and {7} is a connected component of Γ(G). Suppose that G is a Frobenius group. Let
A and B be the Frobenius kernel and a Frobenius complement of G, respectively. Then t(G) = 2,
T (G) = {π(A), π(B)} by Lemma 2.2. Hence π(A) = {7} or π(B) = {7}. Since |A|−1 is divisible by
|B|, both cases can not occur by the order of G. If G is a 2-Frobenius group, then G is solvable by
Lemma 2.3 and so G has a Hall {5, 7}-subgroup, which is impossible by the preceding arguments.
Hence G is neither a Frobenius group nor a 2-Frobenius group. By Lemmas 2.1, we conclude that
G has a normal series 1 E H E K E G, where H is a nilpotent π1-group, K/H is a nonabelian
simple group and G/K is a π1-group such that |G/K| divides the order of Out(K/H). Besides, for
i ≥ 2, πi(G) is also a connected component of Γ(K/H). In particular, 7 is a connected component
of Γ(K/H). By [22, Table 1], we see that K/H is isomorphic to one of the following groups:

A8, L3(4), A7, L2(8), L2(7).

Suppose that K/H ∼= A7. Then |K/H| = 23 · 32 · 5 · 7 and therefore |H| = 22 or 23 since
|G/K| divides the order of Out(K/H). Let N be a minimal normal subgroup of G contained in
H. If |N | ≤ 22, then P acts trivially on N , a contradiction. Hence we may assume that N = H is
elementary abelian of order 23 and it follows that G = K. If CG(H) = H, then K/H is isomorphic
to a subgroup of GL(3, 2), which is impossible. If CG(H) = G, then H ≤ NG(P ), a contradiction.
Hence K/H can not be isomorphic to A7.
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If K/H ∼= L2(8) or L2(7), then 5 does not divide the order of Aut(K/H) by [6] and so 5 divide
the order of H. Let H5 be the Sylow 5-subgroup of H. Then H5 ≤ CG(P ) as above.

Therefore K/H ∼= A8 or L3(4) and consequently G ∼= A8 or L3(4).

(3) Suppose that |G| = |A10| and |G(7)| = |A10(7)| = 27 ·33 ·52. Then |NG(P )| = 2 ·32 ·7 with P
a Sylow 7-subgroup of G.

Let K be the largest normal solvable subgroup of G. Then G 6= K. Otherwise, if G is a solvable
group, then G has a Hall subgroup QP of order 52 · 7, where Q is a Sylow 5-subgroup of G. Pick
a minimal normal subgroup N of QP . If N = P , then Q ≤ NG(P ), which is impossible. If N is a
cyclic group of order 5 or an elementary abelian group of order 25, then P acts trivially on N and
therefore N ≤ NG(P ), another contradiction. Hence K is a proper subgroup of G.

Furthermore, we assert that 7 /∈ π(K). If 7 ∈ π(K), then P is a Sylow 7-subgroup of K and
so G = NG(P )K. By the order of NG(P ), NG(P ) is a solvable group, which implies that G is also
solvable, a contradiction. Hence 7 /∈ π(K). Let N be a minimal normal subgroup of G/K. Then
N is a direct product of nonabelian simple groups and without loss of generality, we can assume
that 7 ∈ π(N). Otherwise, if 7 does not divide the order of any minimal normal subgroup of G/K,
then 214 divide |G| by Lemma 2.4, a contradiction by our hypothesis. Moreover we have that N is
a simple group. By [22, Table 1], we see that N is isomorphic to one of the following groups:

A10, J2, A8, L3(4), A7, U3(3), L2(8), L2(7).

Since NG/K(PK/K) = NG(P )K/K, we see that N is the unique minimal normal subgroup of
G/K. Otherwise, |NG/K(PK/K)| ≥ 22 · 3 · 5 · 7, a contradiction. Let N = H/K. Then we have that
|G/H| divides the order of Out(N).

If N ∼= A8, then 5 divides the order of K and so one can deduce that 5 divides |NG(P )|, a
contradiction.

If N ∼= L3(4), then 5 divides the order of K since |Out(L3(4))| = 12 and so we have a
contradiction.

If N ∼= A7, U3(3), L2(8), L2(7), we also have that 5 divides |K|. Hence we obtain that N is J2 or
A10. Suppose that N ∼= J2. Then |N | = 27 · 33 · 52 · 7 and G/K = N since |Out(J2)| = 2. It follows
that |K| = 3. Clearly, CG(K) > K, which forces CG(K) = G and so K = Z(G). It is obvious
that G′ ∩ Z(G) = Z(G) or 1. But the Schur multiplier of J2 is a cyclic group of order 2. Hence
G′ ∩ Z(G) = 1 and so G ∼= J2 × Z(G), where Z(G) is a cyclic group of order 3. By [6], we get that
|J2(7)| = 27 ·33 ·52 and so |G(7)| = 27 ·33 ·52, as wanted. At last, if N ∼= A10, then G ∼= A10 as well.

Thus, the proof is complete. �

Proof of Proposition 1.7. (1) If S = L4(3), we have |G| = 27 ·36 ·5·13 and |G(13)| = 29 ·36 ·5.
Let P be a Sylow 13-subgroup of G. Then NG(P ) is of order 3 · 13. Similarly as in the case (2) of
the proof of Theorem 1.6, one can show that G ∼= S.

(2) Assume that S = O7(3) or S6(3). Then by the hypothesis and [6], |G| = 29 · 39 · 5 · 7 · 13
and |G(13)| = 210 · 39 · 5 · 7. Let P be a Sylow 13-subgroup of G and K be the largest normal
solvable subgroup of G. Then it is clear that G 6= K. Note that |NG(P )| = 2 · 3 · 13. Then NG(P )
is solvable, which implies that 13 /∈ π(K). Hence we have NG/K(PK/K) = NG(P )K/K. Let L/K
be a minimal normal subgroup of G/K. By Lemma 2.4, we may assume that 13 ∈ π(L/K) and so
L/K is a nonabelian simple group. We may further assume that L/K is the unique minimal normal
subgroup of G/K since |NG(P )| = 2 · 3 · 13. By [22, Table 1], we have that L/K is isomorphic to
one of the following groups:

O7(3), S6(3), L3(9), L2(64), Sz(8), G2(3), L2(27), L2(13), L4(3), L3(3).

If L/K ∼= L3(9), then the order of NG/K(PK/K) is divided by 7 in view of [6], a contradiction.

If L/K ∼= L2(64), then L/K has a cyclic subgroup of order 5 · 13, which implies that 5 divides
the order of NG/K(PK/K), a contradiction.
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If L/K ∼= Sz(8), then by [6], we have that PK/K is normalized by a group of order 4, a
contradiction.

If L/K ∼= G2(3), L2(27), L2(13), L4(3) or L3(3), then by [6], we see that π(K) contains 5 or 7,
since the order of Out(L/K) is not divisible by 5 or 7. It follows that P is normalized by a cyclic
group of order 5 or 7, a contradiction.

Hence we obtain that L/K ∼= O7(3) or S6(3) and so G ∼= O7(3) or S6(3).

Finally, since the number of involutions in O7(3) is not equal to the number of involutions in
S6(3), we see that the second statement holds.

(3) By the hypothesis and [6], we have that |G| = 27 · 36 · 5 · 7 · 13 and |G(13)| = 29 · 36 · 5. Let
P be a Sylow 13-subgroup of G. Then we have |NG(P )| = 3 · 7 · 13. Let K be the largest normal
solvable subgroup of G. Similarly as above, we conclude that G/K has a chief factor L/K such
that L/K ∼= L3(9) or L4(3). If L/K ∼= L3(9), then the result follows. If L/K ∼= L4(3), then we
have that K is cyclic of order 7 since |Out(L4(3))| = 2. Therefore G/K = L/K ∼= L4(3) since
|L4(3)| = 27 · 36 · 5 · 13. Similarly as in the proof of Theorem 1.6, we obtain that G ∼= L4(3)×Z(G),
where Z(G) is cyclic of order 7. In this case, we also have |G(2)| = |S(2)| by [6]. �
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