MSC: 93C10, 45G15
DOI: 10.21538/0134-4889-2021-27-3-271-285
Full text
We obtain an analogue of Wilcox–Snyder formula for flows of diffeomorphisms of Cm-smooth vector fields on infinite-dimensional Banach manifolds. For classical linear system this formula can be efficiently used, for example, to obtain Magnus expansion of solutions. The generalized Wilcox formula is obtained by using an extended Chronological Calculus for Banach manifold. We apply this formula to derive new structured differential equations which solutions approximate solutions of the original differential equation.
Keywords: flow of diffeomorphisms, Wilcox formula, chronological calculus, Magnus expansion.
REFERENCES
1. Agrachev A.A. and Gamkrelidze R.V. Exponential representation of flows and a chronological calculus. Mat. Sb. (N.S.), 1978, vol. 149, pp. 467–532 . English transl. in Math. Sb., 1979, vol. 35, no. 6, pp. 727–785. doi: 10.1070/SM1979v035n06ABEH001623
2. Agrachev A.A. and Gamkrelidze R.V. Chronological algebras and nonstationary vector fields. J. Math. Sci., 1981, vol. 17, no. 1, pp. 1650–1675. doi: 10.1007/BF01084595
3. Agrachev A.A. and Sachkov Yu.L. Control theory from the geometric viewpoint, Encyclopaedia Math. Sci. Book Ser., vol. 87, Berlin: Springer-Verlag, Berlin, 2004. 412 p.
4. Blanes S., Casas F., Oteo J.A., and Ros J. The Magnus expansion and some of its applications. Phys. Rep., 2009, vol. 470, no. 5-6, pp. 151–238. doi: 10.1016/j.physrep.2008.11.001
5. Coron J.-M. Control and nonlinearity, Ser. Math. Surveys and Monographs, vol. 136, Providence, RI: Amer. Math. Soc., 2007. 426 p. doi: 10.1090/surv/136
6. Deimling K. Ordinary differential equations in Banach spaces, Ser. Lecture Notes in Math., Berlin: Springer-Verlag, 1977. 140 p. doi: 10.1007/BFb0091636
7. Diestel J. and Uhl J. Vector measures. Ser. Math. Surveys and Monographs, vol. 15, Providence, RI: Amer. Math. Soc., 1977. doi: 10.1090/surv/015
8. Dyson F. J. . The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. (2), 1949, vol. 75, pp. 486–502. doi: 10.1103/PhysRev.75.486
9. Engel Kl.J. and Nagel R. One-parameter semigroups for linear evolution equations, Ser. Graduate Texts in Math., vol. 194, NY: Springer-Verlag, 2000. 589 p.
10. Kipka R. and Ledyaev Yu. Extension of chronological calculus for dynamical systems on manifolds. J. Diff. Eq., 2015, vol. 258, no. 5, pp. 1765–1790.
11. Lang S. Fundamentals of differential geometry. NY: Springer-Verlag, 1999. 540 p. doi: 10.1007/978-1-4612-0541-8
12. Magnus W. On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math., 1954, vol. 7, pp. 649–673. doi: 10.1002/cpa.3160070404
13. Rossmann W. Lie groups, Ser. Oxford Graduate Texts in Math., vol. 5. Oxford: Oxford University Press, 2002. 265 p.
14. Snider R. F. Variational methods for solving the Boltzmann equation. J. Chem. Phys., 1964, vol. 41, no. 3, pp. 591–595. doi: 10.1063/1.1725930
15. Wilcox R. M. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys., 1967, vol. 8, no. 4, pp. 962–982. doi: 10.1063/1.1705306
Received July 20, 2021
Revised August 11, 2021
Accepted August 23, 2021
Yuri S. Ledyaev, Dr. Phys.-Math. Sci., Prof., Member of Steklov Institute of Mathematics, Moscow, 117966 Russia; Department of Mathematics Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: ledyaev@wmich.edu
Cite this article as: Yuri S. Ledyaev. Wilcox Formula for Vector Fields on Banach Manifolds, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 271–285.
Русский
Ю.С. Ледяев. Формула Уилкокса для векторных полей на банаховых многообразиях
Получен аналог формулы Уилкокса — Снайдера для потоков диффеоморфизмов Cm-гладких векторных полей на бесконечномерных банаховых многообразиях. Эта формула может эффективно использоваться, например, для получения разложения Магнуса решений классических линейных систем. Обобщенная формула Уилкокса получена с использованием расширения хронологического исчисления для банаховых многообразий. Эта формула применена для вывода новых стуктурированных дифференциальных уравнений, решения которых приближают решения исходного дифференциального уравнения.
Ключевые слова: поток диффеоморфизмов, формула Уилкокса, хронологическое исчисление, разложение Магнуса.