Н.Л. Григоренко, Е.Н. Хайлов, Э.В. Григорьева, А.Д. Клименкова. Оптимальные стратегии CAR-T терапии лечения лейкемии в модели хищник — жертва Лотки — Вольтерры ... С. 43-58

УДК 517.977.1

MSC: 49J15, 58E25, 92D25

DOI: 10.21538/0134-4889-2021-27-3-43-58

Рассматривается управляемая математическая модель лечения лейкемии, в основе которой лежит трехмерная модель хищник — жертва Лотки — Вольтерры. Эта модель описывает недавно разработанную технологию лечения лейкемии, представляющую собой терапию Т-клетками с химерными антигенными рецепторами (CAR-T терапию). Такая модель задается на фиксированном отрезке времени с помощью системы четырех дифференциальных уравнений. Эти уравнения определяют взаимодействие между популяциями здоровых и раковых клеток, CAR T-клеток, а также цитокинами. При этом CAR T-клетки выступают в роли хищника, а здоровые и раковые клетки — в роли жертв. Рассматриваемая CAR-T терапия приводит к серьезным побочным эффектам, связанным с быстрым ростом цитокинов, а потому их динамика включена в изучаемую модель. Кроме того, эта модель содержит две ограниченные управляющие функции, отражающие интенсивность проводимой CAR-T терапии (первое управление) и интенсивность приема лекарств, подавляющих активность иммунной системы (второе управление). Исследуется задача минимизации целевой функции, связанной с количеством раковых и здоровых клеток, а также цитокинов как в конечный момент заданного временного отрезка, так и в течение всего этого отрезка. Для аналитического изучения данной задачи применяется принцип максимума Понтрягина. С его помощью устанавливается релейный характер оптимального первого управления, оценивается число его переключений. Показывается, что оптимальное второе управление является постоянной функцией на всем заданном отрезке времени. Для численного анализа этой задачи применяется среда BOCOP-2.2.1. Приводятся результаты численных расчетов, демонстрирующие различные виды оптимальных протоколов проведения CAR-T терапии.

Ключевые слова: лейкемия, нелинейная управляемая система, принцип максимума Понтрягина, релейное управление, функция переключений, обобщенная теорема Ролля

СПИСОК ЛИТЕРАТУРЫ

1.   Heymach J. [et all.] Clinical cancer advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology // J. Clin. Oncol. 2018. Vol. 36, no. 10. P. 1020–1044. doi: 10.1200/JCO.2017.77.0446 

2.   June C.H., Sadelain M. Chimeric antigen receptor therapy // N. Engl. J. Med. 2018. Vol. 379, no. 1. P. 64–73. doi: 10.1056/NEJMra1706169 

3.   Hopkins B., Tucker M., Pan Y., Fang N., Huang Z. A model-based investigation of cytokine storm for T-cell therapy // IFAC-PapersOnLine. 2018. Vol. 51, no. 19. P. 76–79. doi: 10.1016/j.ifacol.2018.09.039 

4.   Barros L.R.C., Rodrigues B.J., Almeida R.C. CAR-T cell goes on a mathematical model // J. Cell Immunol. 2020. Vol. 2, no. 1. P. 31–37. doi: 10.33696/immunology.2.016 

5.   Konstorum A., Vella A.T., Adler A.J., Laubenbacher R.C. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling // J. Roy. Soc. Interface. 2017. Vol. 14, no. 131, art. ID: 20170150. P. 1–10. doi: 10.1098/rsif.2017.0150 

6.   Valentinuzzi D., Jeraj R. Computational modelling of modern cancer immunotherapy // Phys. Med. Biol. 2020. Vol. 65, no. 24, art. ID: 24TR01. P. 1–22. doi: 10.1088/1361-6560/abc3fc 

7.   Leon-Triana O., Sabir S., Calvo G.F., Belmonte-Beitia J., Chulian S., Martinez-Rubio A., Rosa M., Perez-Martinez A., Ramirez-Orellana M., Perez-Garcia V.M. CAR T-cell in B-cell acute lymphoblastic leukaemia: insights from mathematical models // Commun. Nonlinear Sci. 2021. Vol. 94, art. ID: 105570. doi: 10.1016/j.cnsns.2020.105570 

8.   Perez-Garcia V.M., Leon-Triana O., Rosa M., Perez-Martinez A. CAR T cells for T-cell leukemias: insights from mathematical models. arXiv:2004.14291 [q-bio.TO] 26 Apr 2020. 20 p.

9.   Sahoo P. [et al.] Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data // J. Roy. Soc. Interface. 2019. Vol. 17, no. 162, art. ID: 20190734. P. 1–10. doi: 10.1098/rsif.2019.0734 

10.   Nichelatti M. A mathematical model for the chimeric antigen receptor T cell (CAR-T) therapy as a Lotka–Volterra system // J. Math. Stat. Res. 2020. Vol. 3, no. 3. P. 1–4. doi: 10.36266/JMSR/136 

11.   Khailov E.N., Klimenkova A.D., Korobeinikov A. Optimal control for anti-cancer therapy // Extended abstracts spring 2018 / eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes. Basel: Birkhauser, 2019. P. 35–43. (Trends in mathematics; vol. 11). doi: 10.1007/978-3-030-25261-8_6 

12.   Grigorenko N.L., Khailov E.N., Klimenkova A.D., Korobeinikov A. Program and positional control strategies for the Lotka-Volterra competition model // Stability, Control and Differential Games. Proceedings of the International Conference “Stability, Control, Differential Games” (SCDG2019) / eds. A. Tarasyev, V. Maksimov, T. Filippova. Cham: Springer Nature, 2020. P. 39–49. doi: 10.1007/978-3-030-42831-0_4 

13.   Григоренко Н.Л., Хайлов Е.Н., Григорьева Э.В., Клименкова А.Д. Оптимальные стратегии лечения раковых заболеваний в математической модели конкуренции Лотки — Вольтерры // Тр. Ин-та математики и механики УрО РАН. 2020. Т. 26, № 1. C. 71–88.
doi: 10.21538/0134-4889-2020-26-1-71-88 

14.   Mostolizadeh R., Afsharnezhad Z., Marciniak-Czochra A. Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine // Numer. Algebr. Control Optim. 2018. Vol. 8, no. 1. P. 63–80. doi: 10.3934/naco.2018004 

15.   Khailov E., Grigorieva E., Klimenkova A. Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model // Games. 2020. Vol. 11, 53, no. 4, art. ID: 53. P. 1–26. doi: 10.3390/g11040053 

16.   Pillis L.G., Radunskaya A. A mathematical tumor model with immune resistance and drug therapy: an optimal control approach // J. Theoret. Medicine. 2001. Vol. 3. P. 79–100.

17.   Pillis L.G., Radunskaya A. The dynamics of an optimally controlled tumor model: a case study // Math. Comput. Model. 2003. Vol. 37. P. 1221–1244.

18.   Базыкин А.Д. Нелинейная динамика взаимодействующих популяций. Москва; Ижевск: НИЦ “Регулярная и хаотическая динамика”, Ижевский институт компьютерных исследований, 2003. 368 c.

19.   Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972. 576 c.

20.   Васильев Ф.П. Методы оптимизации. М.: Факториал Пресс, 2002. 824 c.

21.   Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970. 720 c.

22.   Dmitruk A.V. A generalized estimate on the number of zeros for solutions of a class of linear differential equations // SIAM J. Control Optim. 1992. Vol. 30, no. 5. P. 1087–1091.

23.   Кузенков О.А., Рябова Е.А. Математическое моделирование процессов отбора. Н. Новгород: Изд-во Нижнегород. ун-та, 2007. 324 c.

24.   Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J. BOCOP 2.2.1 — user guide [e-resource]. August 8, 2019. URL: http://bocop.org .

Поступила 25.03.2021

После доработки 17.05.2021

Принята к публикации 21.06.2021

Григоренко Николай Леонтьевич
д-р физ.-мат. наук, профессор
фак. ВМК МГУ им. М.В. Ломоносова, Москва
e-mail: grigor@cs.msu.su

Хайлов Евгений Николаевич
канд. физ.-мат. наук, доцент
фак. ВМК МГУ им. М.В. Ломоносова, Москва
e-mail: khailov@cs.msu.su

Григорьева Эллина Валерьевна
канд. физ.-мат. наук, профессор
Техасский женский университет, США
e-mail: egrigorieva@mail.twu.edu

Клименкова Анна Дмитриевна
студент
фак. ВМК МГУ им. М.В. Ломоносова, Москва
e-mail: klimenkovaad@mail.ru

Ссылка на статью: Н.Л. Григоренко, Е.Н. Хайлов, Э.В. Григорьева, А.Д. Клименкова. Оптимальные стратегии CAR-T терапии лечения лейкемии в модели хищник — жертва  Лотки — Вольтерры // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27, № 3. С. 43-58

English

N.L. Grigorenko, E.N. Khailov, E.V. Grigorieva, A.D. Klimenkova. Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka–Volterra predator–prey model

A controlled mathematical model of leukemia treatment is considered. The model is based on the three-dimensional Lotka–Volterra predator–prey model, which describes a recently developed leukemia treatment technology called Chimeric Antigen Receptor (CAR) T-cell therapy, and is given on a fixed time interval by a system of four differential equations. The equations describe the interaction between populations of healthy and cancer cells, CAR T-cells, and cytokines. The CAR T-cells act as predators, while healthy and cancer cells act as prey. The CAR T-cell therapy leads to serious side-effects associated with the rapid growth of cytokines, and therefore their dynamics is also included in the model. The model also contains two bounded control functions reflecting the intensity of the therapy (the first control) and the intensity of administration of drugs that suppress the activity of the immune system (the second control). We study the problem of minimizing the objective function related to the number of cancer and healthy cells, as well as cytokines, both at the final moment of a given time interval and during this entire interval. The Pontryagin maximum principle is applied for the analysis of the problem; it is used to establish the bang-bang nature of an optimal first control and to estimate the number of its switchings. It is shown that an optimal second control is a constant function on the entire time interval. The BOCOP-2.2.1 environment is used for the numerical analysis of the problem. The results of numerical calculations are presented, demonstrating various types of optimal protocols for CAR-T therapy.

Keywords: leukemia, nonlinear control system, optimal control, Pontryagin maximum principle, bang-bang control, switching function, generalized Rolle theorem

Received March 25, 2021

Revised May 17, 2021

Accepted June 21, 2021

Nikolai Leont’evich Grigorenko, Dr. Phys.-Math. Sci., Prof., Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 119992, Russia, e-mail: grigor@cs.msu.ru

Evgenii Nikolaevich Khailov, Cand. Sci. (Phys.-Math.), Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 119992, Russia, e-mail: khailov@cs.msu.su

Ellina Valer’evna Grigorieva, Cand. Sci. (Phys.-Math.), Prof., Department of Mathematics and Computer Sciences, Texas Woman’s University, TX 76204, USA, e-mail: egrigorieva@mail.twu.edu

Anna Dmitrievna Klimenkova, undergraduate student, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 119992, Russia, e-mail: klimenkovaad@mail.ru

Cite this article as: N.L. Grigorenko, E.N. Khailov, E.V. Grigorieva, A.D. Klimenkova. Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka–Volterra predator–prey model. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 43–58.

[References -> on the "English" button bottom right]