В.А. Бовкун. Прямые и обратные уравнения для вероятностных характеристик процессов типа Леви в пространствах обобщенных функций ... С. 68-78

УДК 519.21+517.982.4

MSC: 60H10, 35D30, 46F10

DOI: 10.21538/0134-4889-2020-26-2-68-78

Статья посвящена исследованию корректности уравнений для вероятностных характеристик процессов типа Леви, определяемых стохастическими дифференциальными уравнениями (СДУ). На основе формулы Ито и аппарата теории обобщенных функций доказаны следующие результаты. Прямое уравнение для переходной вероятности процесса является корректным на пространстве финитных дважды непрерывно дифференцируемых функций при выполнении условий теоремы существования и единственности решения СДУ. Обратное уравнение для вероятностной характеристики специального вида является корректным на том же пространстве при дополнительных условиях на гладкость коэффициентов СДУ.

Ключевые слова: процесс типа Леви, формула Ито, марковский процесс, переходная вероятность, обобщенная функция

СПИСОК ЛИТЕРАТУРЫ

1.   Protter P.E. Stochastic integration and differential equations. Berlin; Heidelberg: Springer-Verlag, 2005. 415 p. doi: 10.1007/978-3-662-10061-5 

2.   Kunita H. Stochastic flows and jump-diffusions. Singapore: Springer, 2019. 352 p. doi: 10.1007/978-981-13-3801-4 

3.   Kolokoltsov V.N. Markov processes, semigroups and generators. Berlin: Birkhauser, 2011. 430 p. (De Gruyter Studies in Mathematics, 38) doi: 10.1515/9783110250114 

4.   Cont R., Tankov P. Financial modelling with jump processes. 1st ed. N Y: Chapman and Hall/CRC, 2003. 552 p. doi: 10.1201/9780203485217 

5.   Liu Y., Zhang Y., Wang Q. A stochastic SIR epidemic model with Levy jump and media coverage // Advances in Difference Equations. 2020. Vol. 2020, P. 1-15. doi: 10.1186/s13662-020-2521-6 

6.   Kunita H. Ito’s stochastic calculus: Its surprising power for applications // Stochastic Processes and their Applications. 2010. Vol. 120, no. 5. P. 622-652. doi: 10.1016/j.spa.2010.01.013 

7.   Applebaum D. Levy processes and stochastic calculus. Cambridge: Cambridge University Press, 2009, 492 p. doi: 10.1017/CBO9780511809781 

8.   Гельфанд И.М., Шилов Г.Е. Обобщенные функции. Выпуск 1. Обобщенные функции и действия над ними. M.: Физматгиз, 1959. 470 с.

Поступила 10.03.2020

После доработки 20.04.2020

Принята к публикации 27.04.2020

Бовкун Вадим Андреевич
канд. физ.-мат. наук
доцент кафедры математического анализа
Уральского федерального университета
г. Екатеринбург
e-mail: Vadim.Bovkun@urfu.ru

Ссылка на статью: В.А. Бовкун. Прямые и обратные уравнения для вероятностных характеристик процессов типа Леви в пространствах обобщенных функций // Тр. Ин-та математики и механики УрО РАН. 2020. Т. 26, № 2. С. 68-78

English

V.A. Bovkun. Forward and backward equations for the probability characteristics of Levy type processes in spaces of distributions

We study the correctness of equations for the probability characteristics of Levy type processes defined by stochastic differential equations. Using the Ito formula and techniques of the theory of generalized functions, we prove the following results. The forward equation for the transition probability of the process is correct on the space of compactly supported twice continuously differentiable functions under the assumptions of the theorem of existence and uniqueness of solutions to the stochastic differential equation, and the backward equation for a probability characteristic of special form is correct on the same space under additional conditions on the smoothness of the coefficients of the stochastic differential equation.

Keywords: Levy type process, Ito formula, Markov process, transition probability, distribution

Received March 10, 2020

Revised April 20, 2020

Accepted April 27, 2020

Vadim Andreevich Bovkun, Cand. Phys.-Math. Sci., Ural Federal University, Yekaterinburg, 620083 Russia, e-mail: Vadim.Bovkun@urfu.ru

Cite this article as: V.A. Bovkun. Forward and backward equations for the probability characteristics of Levy type processes in spaces of distributions. Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 2, pp. 68–78.

[References -> on the "English" button bottom right]