A.R. Danilin, O.O. Kovrizhnykh. Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case ... P. 58-73

We study a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball and an unbounded target set:
$$
 \left\{
\!\!\!\!\! \begin{array}{llll}
 &\dot{x}=y,\,&\  x,\,y\in \mathbb {R}^{2m},\quad u\in \mathbb {R}^{2m},\\[1ex]
& \varepsilon^2\dot{y}=Jy+u,&\,\|u\|\leqslant 1,\quad 0<\varepsilon\ll 1,\\[1ex]
& x(0)=x^0\neq 0,\quad y(0)=y^0,\\[1ex]
& x(T_\varepsilon)=0,\quad T_\varepsilon \longrightarrow \min,&
 \end{array}
 \right.
$$
where
$\displaystyle J=\left(\begin{array}{rr} 0&I_m \\ 0&0\end{array}\right). $ The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue, and thus does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. The main system of equations for finding a solution is written. In the case $m=1$, we derive and justify a complete asymptotics in the sense of Poincaré with respect to the asymptotic sequence $\varepsilon^q\ln^p\varepsilon$, $q\in\mathbb {N}$, $q-1\ge p\in\mathbb {N}\cup\{0\}$, of the optimal time and of the vector generating the optimal control.

Keywords: optimal control, time-optimal control problem, unbounded target set, singularly perturbed problem, asymptotic expansion, small parameter

Received August 11, 2021

Revised November 22, 2021

Accepted November 29, 2021

Aleksei Rufimovich Danilin, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; e-mail: dar@imm.uran.ru

Ol’ga Olegovna Kovrizhnykh, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: koo@imm.uran.ru

REFERENCES

1.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes, ed. L.W. Neustadt, N Y; London: Interscience Publ. John Wiley & Sons, Inc., 1962, 360 p. ISBN: 0470693819 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov, Moscow: Fizmatgiz Publ., 1961, 391 p.

2.   Krasovskii N.N. Teoriya upravleniya dvizheniem. Lineinye sistemy. [Theory of motion control. Linear systems]. Moscow: Nauka Publ., 1968, 476 p.

3.   Dmitriev M.G., Kurina G.A. Singular perturbations in control problems. Automation and Remote Control, 2006, vol. 67, no. 1, pp. 1–43. doi: 10.1134/S0005117906010012 

4.   Zhang Y., Naidu D.S., Chenxiao Cai and Yun Zou. Singular perturbations and time scales in control theories and applications: an overview 2002-2012. Inter. J. Informaton and Systems Sciences, 2014, vol. 9, no. 1, pp. 1–36.

5.   Kokotovic P.V., Haddad A.H. Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Automat. Control., 1975, vol. 20, no. 1, pp. 111–113. doi: 10.1109/TAC.1975.1100852 

6.   Dontchev A.L. Perturbations, approximations and sensitivity analysis of optimal control systems. Berlin; Heidelberg; N Y; Tokio: Springer-Verlag, 1983, 161 p. doi: 10.1007/BFb0043612. Translated to Russian under the title Sistemy optimal’nogo upravleniya: Vozmushcheniya, priblizheniya i analiz chuvstvitel’nosti, Moscow: Mir Publ., 1987, 156 p.

7.   Donchev A.L., Veliev V.M. Singular perturbation in Mayer’s problem for linear systems. SIAM J. Control Optim., 1983, vol. 21, no. 4, pp. 566–581. doi: 10.1137/0321034 

8.   Kurina G.A., Nguyen T.H. Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients. Computational Mathematics and Mathematical Physics, 2012, vol. 52, no. 4, pp. 524–547. doi: 10.1134/S0965542512040100 

9.   Kurina G.А., Hoai N.T. Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-quadratic control problem in a critical case. AIP Conference Proceedings, 2018, vol. 1997, art. no. 020073. doi: 10.1063/1.5049067 

10.   Nguyen T.H. Asymptotic solution of a singularly perturbed optimal problem with integral constraint. J. Optim. Theory Appl., 2021, vol. 190, no. 3, pp. 931–950. doi: 10.1007/s10957-021-01916-w 

11.   Shaburov A.A. Asymptotic expansion of the solution to a singularly perturbed optimal control problem with an integral convex quality criterion and smooth geometric control constraints. Vestn. of Tambov. Univ. Ser: Natural and Technical Sciences, 2019, vol. 24, no. 125, pp. 119–136 (in Russian). doi: 10.20310/1810-0198-2019-24-125-119-136 

12.   Vasileva A.B., Butuzov V.F. Asimptoticheskie razlozheniya reshenij singulyarno vozmushchennyh uravnenij [Asymptotic expansions of the solutions of singularly perturbed equations]. Moscow, Nauka Publ., 1973, 272 p.

13.   Vasileva A.B., Butuzov V.F. Singularly perturbed equations in the critical case. Madison, Mathematics Research Center University of Wisconsin-Madison, 1980, 156 p. Original Russian text published in Vasileva A.B., Butuzov V.F. Singulyarno vozmushchennye uravneniya v kriticheskikh sluchayakh, Moscow, MGU Publ., 1978, 106 c.

14.   Lee E.B., Markus L. Foundations of optimal control theory. N Y; London; Sydney: John Wiley & Sons, Inc., 1967, 576 p. Translated to Russian under the title Osnovy teorii optimal’nogo upravleniya, Moscow: Nauka Publ., 1972, 576 p. ISBN: 0471522635 .

15.   Danilin A.R., Kovrizhnykh O.O. Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 1, pp. 48–61 (in Russian). doi: 10.21538/0134-4889-2021-27-1-48-61 

16.   Danilin A.R. Asymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular case. Comput. Math. Math. Physics, 2006, vol. 46, no. 12, pp. 2068–2079. doi: 10.1134/S0965542506120062 

17.   Il’in A.M., Danilin A.R. Asimptoticheskie metody v analize [Asymptotic methods in analysis]. Moscow: Fizmatlit Publ., 2009, 248 p. ISBN: 978-5-9221-1056-3 .

18.   Kantorovich L.V., Akilov G.P. Functional analysis. N Y: Pergamon Press Ltd, 1982, 589 p. ISBN: 0-08-023036-9 . Original Russian text published in Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz, Moscow: Nauka Publ., 1959, 684 p.

Cite this article as: A.R. Danilin, O.O. Kovrizhnykh. Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 58–73.