P.A. Tochilin, I.A. Chistyakov. On the construction of a discontinuous piecewise affine synthesis in a target control problem ... P. 194-210

A new method is proposed for the approximate solution of problems of solvability and control synthesis for a nonlinear system of ordinary differential equations. The method is based on the piecewise linearization (hybridization) of equations and on the use of the dynamic programming approach and the comparison principle. The main idea is to construct piecewise affine value functions and a feedback control of a special form. Two cases are considered: when these functions are continuous and when they may have discontinuities on certain sets in the state space. In both cases, we obtain internal estimates for the solvability sets of the original nonlinear system and a feedback control that takes the system’s state vector to the target set on a given finite time interval.

Keywords: nonlinear dynamics, control synthesis, dynamic programming, comparison principle, linearization, switched system, piecewise affine value function

Received March 30, 2021

Revised May 22, 2021

Accepted June 21, 2021

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00613a) and by the Moscow Center of Fundamental and Applied Mathematics (agreement no. 075-15-2019-1621).

Pavel Aleksandrovich Tochilin, Cand. Sci. (Phys.-Math.), Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow, 119991 Russia, e-mail: tochilin@cs.msu.ru

Ivan Aleksandrovich Chistyakov, doctoral student, Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow, 119991 Russia, e-mail: chistyakov.ivan@yahoo.com

REFERENCES

1.   Kurzhanski A.B. Comparison principle for equations of the Hamilton–Jacobi type in control theory. Proc. Steklov Institute Math., 2006, vol. 253, no. 1, pp. S185–S195. doi: 10.1134/S0081543806050130 

2.   Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes. Ser. SCFA, vol. 85, Basel: Birkhauser, 2014, 445 p. doi: 10.1007/978-3-319-10277-1 

3.   Habets L.C.G.J.M., Collins P.J., van Schuppen J.H. Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Automatic Control, 2006, vol. 51, no. 6, pp. 938–948. doi: 10.1109/TAC.2006.876952 

4.   Girard A., Martin S. Synthesis of constrained nonlinear systems using hybridization and robust controllers on simplices. IEEE Trans. Automatic Control, 2012, vol. 57, no. 4, pp. 1046–1051. doi: 10.1109/TAC.2011.2168874 

5.   Kurzhanski A.B., Varaiya P. The Hamilton–Jacobi equations for nonlinear target control and their approximation. In: Analysis and Design of Nonlinear Control Systems, N Y: Springer, 2007, pp. 77–90. doi: 10.1007/978-3-540-74358-3_6 

6.   Subbotin A.I. Generalized solutions of first-order PDEs. The dynamical optimization perspective. Basel: BirkhЈauser, 1995, 314 p. doi: 10.1007/978-1-4612-0847-1 . Translated to Russian under the title Obobshchennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii. Moscow; Izhevsk: Inst. Komp’yuter. Issled. Pub., 2003, 336 p.

7.   Fleming W.H., Soner H.M. Controlled Markov processes and viscosity solutions. N Y: Springer, 2006, 429 p. doi: 10.1007/0-387-31071-1 

8.   Bardi M., Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Ser. Systems & Control: Foundations & Applications, Boston: Birkhauser, 2008, 570 p. ISBN: 0817647554 .

9.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. New York: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1974, 456 p.

10.   Tochilin P.A. Piecewise affine feedback control for approximate solution of the target control problem. In: IFAC-PapersOnLine. 2020. Vol. 53, iss. 2. P. 6127–6132. doi: 10.1016/j.ifacol.2020.12.1691 

11.   Chistyakov I.A., Tochilin P.A. Application of piecewise quadratic value functions to the approximate solution of a nonlinear target control problem. Differential equations, 2020, vol. 56, no. 11, pp. 1513–1523. doi: 10.1134/S00122661200110129 

12.   Asarin E., Dang T., Girard A. Hybridization methods for the analysis of nonlinear systems. Acta Informatica, 2007, vol. 43, no. 7, pp. 451–476. doi: 10.1007/s00236-006-0035-7 

13.   Li D., Bak S., Bogomolov S. Reachability analysis of nonlinear systems using hybridization and dynamics scaling. In: Bertrand N., Jansen N. (eds) Formal Modeling and Analysis of Timed Systems, Ser. LNCIS, vol. 12288. Springer, 2020, pp. 265–282 . doi: 10.1007/978-3-030-57628-8_16 

14.   Tochilin P.A. On the construction of nonconvex approximations to reach sets of piecewise linear systems. Differential equations, 2015, vol. 51, no. 11, pp. 1503–1515. doi: 10.1134/S0012266115110117 

15.   Tochilin P.A. On the construction of a piecewise affine value function in an infinite-horizon optimal control problem. Trudy Inst. Mat. i Mekh. UrO RAN, 2020, vol. 26, no. 1, pp. 223–238 (in Russian). doi: 10.21538/0134-4889-2020-26-1-223-238 

Cite this article as: P.A. Tochilin, I.A. Chistyakov. On the construction of a discontinuous piecewise affine synthesis in a target control problem, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 194–210.