A.A. Makhnev, M.S. Nirova. On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60} ... С. 182-190.

Let $\Gamma$ be a distance-regular graph of diameter 3 with eigenvalues $\theta_0>\theta_1>\theta_2>\theta_3$. If $\theta_2=-1$, then the graph $\Gamma_3$ is strongly regular and the complementary graph $\bar\Gamma_3$ is pseudogeometric for $pG_{c_3}(k,b_1/c_2)$. If $\Gamma_3$ does not contain triangles and the number of its vertices~$v$ is less than 800, then $\Gamma$ has intersection array {69,56,10;1,14,60}. In this case $\Gamma_3$ is a graph with parameters (392,46,0,6) and $\bar \Gamma_2$ is a strongly regular graph with parameters (392,115,18,40). Note that the neighborhood of any vertex in a graph with parameters (392,115,18,40) is a strongly regular graph with parameters (115,18,1,3), and its existence is unknown. In this paper, we find possible automorphisms of this strongly regular graph and automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}. In particular, it is proved that the latter graph is not arc-transitive.

Keywords: distance-regular graph, automorphism of a graph.

The paper was received by the Editorial Office on February 27, 2017.

Aleksandr Alekseevich Makhnev, Dr. Phys.-Math. Sci, RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia; Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: makhnev@imm.uran.ru 

Marina Sefovna Nirova, Cand. Phys.-Math. Sci, Kabardino-Balkarian State University named after H. M. Berbekov, Nal’chik, 360004 Russia; Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: nirova_m@mail.ru

REFERENCES

1.   Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin, Heidelberg, New York, Springer-Verlag, 1989, 495 p. doi: 10.1007/978-3-642-74341-2 .

2.   Makhnev A.A., Paduchikh D.V., Samoilenko M.S. Automorphisms of a graph with intersection array {115,96,30,1;1,10,96,115}. Dokl. Math., 2014, vol. 90, no. 3, pp. 692–696.
doi: 10.1134/S1064562414060131 .

3.   Makhnev A.A., Samoilenko M.S. Automorphisms of a strongly regular graph with parameters (276,75,10,24). Dokl. Math., 2014, vol. 90, no. 1, pp. 485–488. doi: 10.1134/S1064562414050238 .

4.   Makhnev A.A., Ponomarev, D.N. Automorphisms of a strongly regular graph with parameters (392, 115, 18, 40). Dokl. Math., 2015, vol. 91, no. 1, pp. 12–15. doi: 10.1134/S1064562414070035 .

5.   Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. Discrete Math. 2011, vol. 311, iss. 2-3, pp. 132–144. doi: 10.1016/j.disc.2010.10.005 .

6.   Cameron P. Permutation Groups. London, Cambridge Univ. Press, 1999. 220 p.

7.   Gavrilyuk A.L., Makhnev, A.A. On automorphisms of distance-regular graphs with intersection array {56,45,1;1,9,56}. Dokl. Math., 2010, vol. 81, no. 3, pp. 439–442. doi: 10.1134/S1064562410030282 .

8.   Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. Sibirean Electr. Math. Reports, 2009, vol. 6, pp. 1–12. ISSN 1813-3304 .