S.A. Nikitina, V.I. Ukhobotov. A scalar problem of stock control under fuzzy demand ... P. 152-162

A scalar discrete dynamic problem of stock control is considered. It is assumed that the information about the demand for goods comes at each discrete moment in time in the form of a fuzzy number that belongs to a given base of fuzzy numbers. The control is sought in the class of real numbers. At each time, the amount of available goods is characterized by a fuzzy number. The aim of the control is to guarantee that the value of the membership function of the amount of goods realized at a given time calculated on the desired value of the amount of goods is not less than a given real number. We construct a set of initial stocks of goods such that for each of them it is possible to form a control that fulfills the aim for any realization of a fuzzy query. If the value of the initial stock of goods does not belong to this set, then there is an algorithm for generating a demand under which the aim of the control cannot be achieved.

Keywords: discrete system, stock management problem, fuzzy demand information

Received April 21, 2021

Revised June 9, 2021

Accepted June 28, 2021

Funding Agency: This work was supported jointly by the Russian Foundation for Basic Research and Chelyabinsk Oblast (project no. 20-41-740027).

Svetlana Anatol’evna Nikitina, Cand. Phys.-Math. Sci., Docent, Chelyabinsk State University, Chelyabinsk, 454001 Russia, e-mail: nikitina@csu.ru

Viktor Ivanovich Ukhobotov, Dr. Phys.-Math. Sci., Prof., Chelyabinsk State University, Chelyabinsk, 454001 Russia, e-mail: ukh@csu.ru

REFERENCES

1.   Propoy A.I. Elementy teorii optimal’nykh diskretnykh protsessov [Elements of the theory of optimal discrete processes]. Moscow: Nauka Publ., 1973, 256 p.

2.   Negojta K.V. Management applications of system theory. Basel: Birkhauser, 1979, 179 p. doi: 10.1007/978-3-0348-6300-1 . Translated to Russian under the title Primenenie teorii sistem k problemam upravleniya. Moscow: Mir Publ., 1981, 179 p.

3.   Bellman R. Dynamic Programming. Princeton, N.J.: Princeton University Press, 1957, 365 p. ISBN: 069107951X . Translated to Russian under the title Dinamicheskoe programmirovanie. Moscow: Inostrannaya Literatura Publ., 1960, 400 p.

4.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishechenko E.F. The mathematical theory of optimal processes. N Y; London: John Wiley & Sons, 1962, 515 p. doi: 10.1002/zamm.19630431023 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov. Moscow: Nauka Publ., 1969, 384 p.

5.   Shorikov A.F. Minimaksnoe otsenivanie i upravlenie v diskretnykh dinamicheskikh sistemakh [Minimax estimation and control in discrete dynamical systems]. Ekaterinburg: Izd-vo Ural’skogo Universiteta, 1997, 242 p. ISBN: 5-7525-0495-3 .

6.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1974, 456 p.

7.   Krasovskii N.N. Upravlenie dinamicheskoi sistemoi [Control of a dynamical system]. Moscow: Nauka Publ., 1985, 516 p.

8.   Shorikov A.F. An algorithm of adaptive minimax control for the pursuit-evasion process in discrete-time dynamical system. Proc. Steklov Inst. Math., 2000, vol. 6, suppl. 2, pp. S173–S190.

9.   Wang Y., Xu L. Dynamics and control on a discrete multi-inventory system. J. Control Sci. Eng., 2019, vol. 2019, art. ID: 6926342, 7 p. doi: 10.1155/2019/6926342 

10.   Nikitina S.A., Ukhobotov V.I. On one problem of inventory control in the presence of interference. Chelyabinsk Physical and Mathematical Journal, 2020, vol. 5, no. 3, pp. 306–315 (in Russian). doi: 10.47475/2500-0101-2020-15305 

11.   Baidosov V.A. Differential game with fuzzy target set and fuzzy starting positions. Applied Mathematics and Mechanics, 1989, vol. 53, no. 1, pp. 60–65 (in Russian).

12.   Baidosov V.A. On the problem of convergence in a differential game with one particular type of a fuzzy target set. In: Upravlenie v dinamicheskikh sistemakh (Control in dynamic systems). Sverdlovsk: UrO AN SSSR, 1990, pp. 12–17 (in Russian).

13.   Seidi M., Hajiaghamemar M., Segee B. Fuzzy control systems: LMI-based design. In: Fuzzy Controllers – Recent Advances in Theory and Applications. 2012, pp. 441–464. doi: 10.5772/48529 

14.   Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning. N Y: Elsevier, 1973. Translated to Russian under the title Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii. Moscow: Mir Publ., 1976, 165 p.

15.   Ukhobotov V.I. Izbrannye glavy teorii nechetkikh mnozhestv [Selected chapters of fuzzy set theory]. Chelyabinsk: Chelyabinsk State University Publ., 2011, 245 p. ISBN: 978-5-7271-1080-5 .

16.   Ukhobotov V. A continuous game in space with an incomplete linear structure. J. Comput. Syst. Sci. Int., 1997, vol. 36, no. 2, pp. 262–264.

17.   Ukhobotov V.I. Stable property of the programmed absorption operator in games with simple motion and with a convex target in spaces with incomplete linear structure. Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8, pp. 181–189 (in Russian).

18.   Rockafellar R. Convex Analysis. Princeton: Princeton University Press, 1970, 451 p. ISBN: 0691015864 . Translated to Russian under the title Vypuklyi analiz. Moscow: Mir Publ., 1973, 469 p.

Cite this article as: S.A. Nikitina, V.I. Ukhobotov. A scalar problem of stock control under fuzzy demand, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 152–162.