M.I. Gusev. On the method of penalty functions for control systems with state constraints under integral constraints on the control ... P. 59-70

We consider a nonlinear control system with state constraints. The system is linear in the control variables, and the control constraints are given by a quadratic integral inequality. A procedure for eliminating the state constraints is proposed for the approximate construction of the reachable set. The procedure is based on introducing an auxiliary unconstrained control system whose right-hand side depends on a small parameter. Under certain conditions on the behavior of the velocities of the system at the boundary of the state constraints, we prove the convergence of the reachable sets of the auxiliary system to the reachable set of the original system in the Hausdorff metric as the small parameter tends to zero. The results of numerical simulation are presented.

Keywords: control system, integral constraints, reachable set, state constraints

Received May 31, 2021

Revised June 15, 2021

Accepted August 2, 2021

Mikhail Ivanovich Gusev, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: gmi@imm.uran.ru

REFERENCES

1.   Kurzhanskii A.B., Filippova T.F. Description of the pencil of viable trajectories of a control system. Differ. Uravn., 1987, vol. 23, no. 8, pp. 1303–1315 (in Russian).

2.   Aseev S.M. An optimal control problem for a differential inclusion with state constraints. Smooth approximations and necessary optimality conditions. J. Math. Sci., 2001, vol. 103, no. 6, pp. 670–685. doi: 10.1023/A:1009546316482 

3.   Gusev M. On reachability analysis for nonlinear control systems with state constraints. Discrete Contin. Dyn. Syst., 2015, vol. 2015, pp. 579–587. doi: 10.3934/proc.2015.0579 

4.   Bressan A., Facchi G. Trajectories of differential inclusions with state constraints. J. Diff. Eq., 2011, vol. 250, no. 4, pp. 2267–2281. doi: 10.1016/j.jde.2010.12.021 

5.   Gusev M.I. On the penalty function method in the problem of constructing reachable sets for control systems with state constraints. Trudy Inst. Math. Mekh. UrO RAN, 2013, vol. 19, no. 1, pp. 81–86 (in Russian).

6.   Gusev M.I. Internal approximations of reachable sets of control systems with state constraints. Proc. Steklov Inst. Math., 2014, vol. 287, suppl. 1, pp. 77–92. doi: 10.1134/S0081543814090089 

7.   Dar’in A.N., Kurzhanskii A.B. Control under indeterminacy and double constraints. Diff. Eq., 2003, vol. 39, no. 11, pp. 1554–1567. doi: 10.1023/B:DIEQ.0000019347.24930.a3 

8.   Subbotin A.I., Ushakov V.N. Alternative for an encounter-evasion differential game with integral constraints on the players’ controls. J. Appl. Math. Mech., 1975, vol. 39, no. 3, pp. 367–375. doi: 10.1016/0021-8928(75)90001-5 

9.   Ukhobotov V.I. On a class of differential games with an integral constraint. J. Appl. Math. Mech., 1977, vol. 41, no. 5, pp. 838–844. doi: 10.1016/0021-8928(77)90166-6 

10.   Polyak B.T. Сonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls. Dynamics of Continuous, Discrete and Impulsive Systems Ser. A: Math. Anal., 2004, vol. 11, no. 2-3, pp. 255–267.

11.   Huseyin N., Huseyin A. Compactness of the set of trajectories of the controllable system described by an affine integral equation. Appl. Math. Comp., 2013, vol. 219, no. 16, pp. 8416–8424. doi: 10.1016/j.amc.2013.03.005 

12.   Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Diff. Eq. Appl., 2007, vol. 14, no. 1-2, pp. 57–73. doi: 10.1007/s00030-006-4036-6 

13.   Guseinov Kh. G. Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls. Nonlinear Analysis: Theory, Methods & Applications, 2009, vol. 71, no. 1, pp. 622–645. doi: 10.1016/j.na.2008.10.097 

14.   Kostousova E.K State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques. IFAC-PapersOnLine, 2018, vol. 51, no. 32, pp. 245–250. doi: 10.1016/j.ifacol.2018.11.389 

15.   Rousse Р., Garoche P.L., Henrion D. Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint. European J. Control, 2021, vol. 58, pp. 152–167. doi: 10.1016/j.ejcon.2020.08.002 

16.   Anan’ev B.I., Gusev M.I., Filippova T.F. Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennost’yu [Control and estimation of states of dynamical systems with uncertainty]. Novosibirsk: SO RAN Publ., 2018, 193 p. ISBN: 978-5-7692-1624-4 .

17.   Sontag E.D. A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Systems and Control Letters, 1989, vol. 13, no. 2, pp. 117–123. doi: 10.1016/0167-6911(89)90028-5 

18.   Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes. Theory and computation. Basel: Birkhauser, 2014, Ser. Systems & Control: Foundations & Applications, Book 85, 445 p. doi: 10.1007/978-3-319-10277-1 

19.   Baier R., Gerdts M., Xausa I. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control and Optimization, 2013, vol. 3, no. 3, pp. 519–548. doi: 10.3934/naco.2013.3.519 

20.   Helsen R., Van Kampen E.-J., De Visser C., Chu Q.P. Distance-fields-over-grids method for aircraft envelope determination. J. Guidance Control and Dynamics, 2016, vol. 39, no. 7, pp. 1–11. doi: 10.2514/1.G000824 

21.   Rasmussen M., Rieger J., Webster K. N. Approximation of reachable sets using optimal control and support vector machines. J. Comp. Appl. Math., 2017, vol. 311, pp. 68–83. doi: 10.1016/j.cam.2016.06.015 

22.   Subbotin A.I. Generalized solutions of first-order PDE’s. The dynamic optimization perspective. Boston: Birkhauser, 1995, 314 p. doi: 10.1007/978-1-4612-0847-1 

23.   Bardi M., Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Boston: Birkhauser, 1997, 574 p. doi: 10.1007/978-0-8176-4755-1 

Cite this article as: M.I. Gusev. On the method of penalty functions for control systems with state constraints under integral constraints on the control, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 59–70; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2022, Vol. 317, Suppl. 1, pp. S98–S108.