N. A. Il'yasov. The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics ... P. 144-158.

We study the problem of order optimality of an upper bound for the best approximation in~$L_{q}(\mathbb T)$ in terms of the $l$th-order modulus of smoothness (the modulus of continuity for $l=1$) in $$L_{p}(\mathbb T)\colon E_{n-1}(f)_{q}\le C(l,p,q)\big(\textstyle\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\big)^{1/q}, n\in\mathbb N,$$ on the class $M_{p}(\mathbb T)$ of all functions $f\in L_{p}(\mathbb T)$ whose Fourier coefficients satisfy the conditions $$a_{0}(f)=0, a_{n}(f)\downarrow 0, \text {and} b_{n} (f)\downarrow 0 (n\uparrow \infty),  l\in\mathbb N, 1< p < q < \infty, l>\sigma=1/p-1/q, \text{and} \mathbb T=(-\pi,\pi].$$ For $l=1$ and $p\ge 1$, the bound was first established by P. L. Ul'yanov in the proof of the inequality of different metrics for moduli of continuity; for $l>1$ and $p\ge 1$, the proof of the bound remains valid in view of the $L_{p}$-analog of the Jackson-Stechkin inequality. Below we formulate the main results of the paper. A function $f\in M_{p}(\mathbb T)$ belongs to $L_{q}(\mathbb T)$, where $1 < p < q < \infty$, if and only if $\sum_{n=1}^{\infty}n^{q\sigma-1}\omega_{l}^{q}(f;\pi/n)_{p}< \infty$, and the following order inequalities hold:

(a) $E_{n-1}(f)_{q}+n^{\sigma}\omega_{l}(f;\pi/n)_{p}\asymp\big(\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q} (f;\pi/\nu)_{p}\big)^{1/q}$, $n\in\mathbb N$;

(b) $n^{-(l-\sigma)}\big(\sum_{\nu=1}^{n}\nu^{p(l-\sigma)-1}E_{\nu-1}^{p}(f)_{q}\big)^{1/p}\asymp \big(\sum\limits_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\big)^{1/q}$, $n\in\mathbb N$.

In the lower bound in inequality (a), the second term $n^{\sigma}\omega_{l}(f;\pi/n)_{p}$ generally cannot be omitted. However, if the sequence $\{\omega_{l}(f;\pi/n)_p\}_{n=1}^{\infty}$ or the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ satisfies Bari's $(B_{l}^{(p)})$-condition, which is equivalent to Stechkin's $(S_{l})$-condition, then $$E_{n-1}(f)_{q}\asymp\bigg(\sum_{\nu=n+1}^{\infty}\nu^{q\sigma-1}\omega_{l}^{q}(f;\pi/\nu)_{p}\bigg)^{1/q}, n\in\mathbb N.$$ The upper bound in inequality~(b), which holds for any function $f\in L_{p}(\mathbb T)$ if the series converges, is a strengthened version of the direct theorem. The order inequality $(b)$ shows that the strengthened version is order-exact on the whole class~$M_{p}(\mathbb T)$.

Keywords: best approximation, modulus of smoothness, direct theorem in different metrics, trigonometric Fourier series with monotone coefficients, order-exact inequality on a class.

The paper was received by the Editorial Office on March 15, 2017.

Niyazi Aladdin ogly Il'yasov, Cand. Sci. (Phys.-Math.), Baku State University, Baku, Azerbaijan, e-mail: niyazi.ilyasov@gmail.com .

REFERENCES

1.   Il’yasov N.A. On the direct theorem of approximation theory of periodic functions in different metrics. Proc. Steklov Inst. Math., 1997, vol. 219, pp. 215–230.

2.   Stechkin S.B. On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR. Ser. Mat., 1951, vol. 15, no. 3, pp. 219–242 (in Russian).

3.   Timan A.F. Theory of approximation of functions of real variables. Oxford, London, New York, Pergamon Press, 1963, 655 p. This translation has been made from A.F. Timan’s book entitled Teoriya priblizheniya funktsii deystvitel’nogo peremennogo, Moscow, Fizmatgiz Publ., 1960, 624 p.

4.   Konyushkov A.A. Best approximations by trigonometric polynomials and Fourier coefficients. Mat. Sb. (N.S.), 1958, vol. 44(86), no. 1, pp. 53–84 (in Russian).

5.   Ul’yanov P.L. Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics. Math. USSR-Sb., 1970, vol. 10, no. 1, pp. 103–126.

6.   Kolyada V.I. On relations between moduli of continuity in different metrics. Proc. Steklov Inst. Mаth., 1989, vol. 4, pp. 127–148.

7.   Goldman M.L. An imbedding criterion for different metrics for isotropic Besov spaces with arbitrary moduli of continuity. Proc. Steklov Inst. Math., 1994, vol. 2, pp. 155–181.

8.   Bari N.K. A treatise on trigonometric series. Vols. I, II. Oxford, New York: Pergamon Press, 1964, vol. I, 533 p; vol. II, 508 p. Original Russian text published in Trigonometricheskie ryady, Moscow, Fiz.-Mat. Giz. Publ., 1961, 936 p.

9.   Bari N.K., Stechkin S.B. Best approximations and differential properties of two conjugate functions. Trudy Mosk. Mat. Obsh, 1956, vol. 5, pp. 483–522 (in Russian).

10.   Lozinskii S.M. The converse of Jackson’s theorems. Dokl. Akad. Nauk SSSR, 1952, vol. 83, no. 5, pp. 645–647 (in Russian).

11.   Zygmund A. Trigonometric series, vol. I, II. Cambridge: Cambridge Univ. Press, 1959; vol. I, 383 p.; vol. II, 354 p. Translated under the title Trigonometricheskie ryady. M.: Mir Publ., 1965, vol. I, 616 p; vol. II, 538 p.

12.   Hardy G.H., Littlewood J.E., Polya G. Inequalities. London: Cambridge Univ. Press, 1934. 314 p. Translated under the title Neravenstva, Мoscow, Inostran. Literat. Publ., 1948, 456 с.

13.   Konyushkov A.A. On best approximations in the conversion of the Fourier coefficients by the method of arithmetic average and on the Fourier series with non-negative coefficients. Sib. Mat. Zhurn., 1962, vol. 3, no. 1, pp. 56–78 (in Russian).

14.   Kokilashvili V.M. On approximation of periodic functions. Tr. Tbilis. Mat. Inst., 1968, vol. 34, pp. 51–81 (in Russian).

15.   Aljancic S. On the integral moduli of continuity inLp (1 < p < ∞) of Fourier series with monotone coefficients. Proc. Amer. Math. Soc., 1966, vol. 17, no. 2, pp. 287–294.

16.   Zygmund A. Smooth functions. Duke Math. J., 1945, vol. 12, no. 1, pp. 47–76.

17.   Timan M.F. Inverse theorems of the constructive theory of functions in Lp spaces (1 ≤ p ≤ ∞). Mat. Sb. (N.S.), 1958, vol. 46(88), no. 1, pp. 125–132 (in Russian).

18.   Timan M.F. On the Jackson theorem in Lp spaces. Ukr. Mat. Zhurn., 1966, vol. 18, no. 1, pp. 134–137 (in Russian).

19.   Il’yasov N.A. The inverse theorem in different metrics of approximation theory for periodic functions with monotone Fourier coefficients. Tr. Inst. Mat. Mekh. UrO RAN, 2016, vol. 22, no. 4, pp. 153–162 (in Russian).

20.   Ul’yanov P.L. Embedding of certain classes of functions Hpω. Math. USSR–Izv., 1968, vol. 2, no. 3, pp. 601–637.

21.   Storozhenko E.A. Embedding theorems and best approximations. Math. USSR–Sb., 1975, vol. 26, no. 2, pp. 213–224.