We consider the problem of the dynamic reconstruction of an observed state trajectory $x^*(\cdot)$ of an affine deterministic dynamic system and the control that has generated this trajectory. The reconstruction is based on current information about inaccurate discrete measurements of $x^*(\cdot)$. A correct statement of the problem on the construction of approximations $u^l(\cdot)$ of the normal control $u^*(\cdot)$ generating $x^*(\cdot)$ is refined. The solution of this problem obtained using the variational approach proposed by the authors is discussed. Conditions on the input data and matching conditions for the approximation parameters (parameters of the accuracy and frequency of measurements of the trajectory and an auxiliary regularizing parameter) are given. Under these conditions, the reconstructed trajectories $x^l(\cdot)$ of the dynamical system converge uniformly to the observed trajectory $x^*(\cdot)$ in the space of continuous functions $C$ as $l\to\infty$. It is proved that the proposed controls $u^l(\cdot)$ converge weakly* to $u^*(\cdot)$ in the space of summable functions $L^1$.
Keywords: dynamic reconstruction problems, convex-concave discrepancy, problems of calculus of variations, Hamiltonian systems
Received February 26, 2021
Revised April 7, 2021
Accepted April 12, 2021
Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00362).
Nina Nikolaevna Subbotina, Dr. Phys.-Math. Sci., RAS Corresponding Member, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620002 Russia, e-mail: subb@uran.ru
Evgenii Aleksandrovich Krupennikov, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620002 Russia, e-mail: krupennikov@imm.uran.ru
REFERENCES
1. Subbotina N.N., Krupennikov E.A. The method of characteristics in an identification problem. Proc. Steklov Inst. Math., 2017, vol. 299, pp. 205–216. doi: 10.1134/S008154381709022X
2. Subbotina N.N., Tokmantsev T.B., Krupennikov E.A. Dynamic programming to reconstruction problems for a macroeconomic model. In: Bociu L., D$\acute{\mathrm{e}}$sid$\acute{\mathrm{e}}$ri J.-A., Habbal A. (eds) 27th IFIP Conference on System Modeling and Optimization (CSMO 2015), IFIP Adv. Inf. Comm. Te., vol. 494, Cham: Springer, 2016, pp. 472–481. doi: 10.1007/978-3-319-55795-3_45
3. Subbotina N.N., Krupennikov E.A. Hamiltonian systems for dynamic control reconstruction problems. Minimax Theory Appl., 2020, vol. 5, no. 2, pp. 439–454.
4. Ngoc D.V., Marcelo H. Ang Jr. Dynamic model identification for industrial robots. Acta Polytechnica Hungarica, 2009, vol. 6, no. 5, pp. 51–68.
5. Sturz Y.R., Affolter L.M., Smith R.S. Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility. IFAC PapersOnLine, 2017, vol. 50, no. 1, pp. 6863–6868. doi: 10.1016/j.ifacol.2017.08.1208
6. Ren C., Wang N., Liu Q., Liu Ch. Dynamic force identification problem based on a novel improved Tikhonov regularization. Mathematical Problems in Engineering. 2019, vol. 2019, art.-no. 6095184, 13 p. doi: 10.1155/2019/6095184
7. Chung J., Saibaba A.K., Brown M., Westman E. Efficient generalized Golub–Kahan based methods for dynamic inverse problems. Inverse Problems, 2018, vol. 34, art.-no. 024005, 12 p. doi: 10.1088/1361-6420/aaa0e1
8. Liu Y.C., Chen Y.W., Wang Y.T., Chang J.R. A high-order Lie groups scheme for solving the recovery of external force in nonlinear system. Inverse Problems in Science and Engineering, 2018, vol. 26, no. 12, pp. 1749–1783. doi: 10.1080/17415977.2018.1433669
9. D’Autilia M.C., Sgura I., Bozzini B. Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach. Inverse Problems, 2017, vol. 33, no. 12, art.-no. 124009. doi: 10.1088/1361-6420/aa9834
10. Schuster N., Burger M., Hahn B. Dynamic inverse problems: modelling-regularization-numerics. Preface. Inverse Problems, 2018, vol. 34, art.-no. 040301, 4 p. doi: 10.1088/1361-6420/aab0f5
11. Sabatier P.C. Past and future of inverse problems. J. Math. Phys., 2000, vol. 41, no. 6, pp. 4082–4124. doi: 10.1063/1.533336
12. Vasin V.V. Methods for solving nonlinear ill-posed problems based on the Tikhonov–Lavrentiev regularization and iterative approximation. Eurasian J. Math. Comp. Appl., 2016, vol. 4, no. 4, pp. 60–73. doi: 10.32523/2306-6172-2016-4-4-60-73
13. Kabanikhin S.I., Krivorotko O.I. Identification of biological models described by systems of nonlinear differential equations. J. of Inverse and Ill-posed Problems, 2015, vol. 23, no. 5, pp. 519–527. doi: 10.1515/jiip-2015-0072
14. Schmitt U., Louis A.K., Wolters C., Vauhkonen M. Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Problems, 2002, vol. 18, no. 3, pp. 659–676. doi: 10.1088/0266-5611/18/3/309
15. Kryazhimskii A.V., Osipov Yu.S. Modelling of a control in a dynamic system. Engrg. Cybernetics, 1983, vol. 21, no. 2, pp. 38–47.
16. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1974, 456 p.
17. Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Some algorithms for the dynamic reconstruction of inputs. Proc. Steklov Inst. Math., 2011, vol. 275, pp. 86–120. doi: 10.1134/S0081543811090082
18. Tikhonov A.N. On the stability of inverse problems. C. R. (Dokl.) Acad. Sci. USSR, 1943, vol. 39, pp. 176–179.
19. Ioffe A.D., Tihomirov V.M. Theory of extremal problems. Studies in Mathematics and its Applications, vol. 6. Amsterdam; New York; Oxford: North-Holland Publishing Company, 1979, 460 p. ISBN: 0444851674 . Original Russian text published in Ioffe A.D., Tikhomirov V.M. Teoriya ekstremal’nykh zadach. Moscow: Nauka Publ., 1974, 480 p.
20. Neudecker H., Magnus J.R. Matrix differential calculus with applications in statistics and econometrics. New Jersey: John Wiley & Sons Ltd, 2019, 472 p. doi: 10.1002/9781119541219 . Translated to Russian under the title Matrichnoe differentsial’noe ischislenie s prilozheniyami k statistike i ekonometrike. Moscow: FIZLIT Publ., 2002, 486 p.
21. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. (Two volumes in one, translated from the first Russian edition 1957–1961). United States: Martino Fine Books. 2012, 280 p. ISBN: 1614273049 . The 7th edition of Russian text published in Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza. Moscow: Nauka Publ., 2004, 572 p.
22. Warga J. Optimal control of differential and functional equations. New York: Acad. Press, 1972, 531 p. doi: 10.1016/C2013-0-11669-8 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami. Moscow: Nauka Publ., 1977, 624 p.
23. Gamkrelidze R.V. Principles of optimal control theory. Springer, 1978, 175 p. ISBN: 978-1-4684-7398-8 . Original Russian text published in Gamkrelidze R.V. Osnovy optimal’nogo upravleniya. Tbilisi: Tbilis. Univ. Publ., 1977, 256 p.
Cite this article as: N.N. Subbotina, E.A. Krupennikov. Weak* approximations for the solution of a dynamic reconstruction problem, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 208–220; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2022, Vol. 317, Suppl. 1, pp. S71–S89.