V.L. Rozenberg. On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations ... P. 197-207

The problem of reconstructing an unknown disturbance in a system of ordinary differential equations of a special kind is investigated on the basis of the approach of the theory of dynamic inversion. A statement is considered in which the disturbance is reconstructed synchronously with the process from incomplete discrete information on a part of coordinates of the phase trajectory. A finite-step software-oriented solution algorithm based on the method of auxiliary closed-loop models is proposed, and its error is estimated. The novelty of the paper is that we consider the inverse problem for a partially observed system with a nonlinear with respect to disturbance equation describing the dynamics of the unmeasured coordinate.

Keywords: system of ordinary differential equations, nonlinearity with respect to disturbance, lack of information, dynamic reconstruction, controlled model

Received March 16, 2021

Revised April 20, 2021

Accepted April 26, 2021

Valeriy Lvovich Rozenberg, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural State University of Railway Transport, Yekaterinburg, 620034 Russia, e-mail: rozen@imm.uran.ru

REFERENCES

1.    Brockett R.W., Mesarovich M.P. The reproducivility of multivariable control systems. J. Math. Anal. Appl., 1965, vol. 11, no. 1–3, pp. 548–563.

2.   Sain M.K., Massey J.L. Invertibility of linear time-invariant dynamical systems. IEEE Trans. Automat. Contr., 1969, vol. AC-14, pp. 141–149. doi: 10.1109/TAC.1969.1099133 

3.   Norton J.P. An introduction to identification. London: Acad. Press, 1986, 310 p.

4.    Ljung L., S$\ddot{\mathrm{o}}$derstr$\ddot{\mathrm{o}}$m T. Theory and practice of recursive identification. Cambridge: M.I.T. Press, 1983, 528 p.

5.   Bar-Shalom Y., Li X.R. Estimation and tracking: principles, techniques, and software. Boston: Artech House, 1993, 511 p.

6.   Tikhonov A.N., Arsenin V.Ya. Methods for Solutions of Ill-Posed Problems. N Y: Wiley, 1977, 258 p. ISBN: 0470991240 . Original Russian text published in Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. Moscow: Nauka Publ., 1979, 285 p.

7.    Kabanikhin S.I. Inverse and ill-posed problems. Berlin: De Gruyter, 2011, 459 p.

8.   Papadimitriou T., Diamantaras K.I., Strintzis M.G., and Roumeliotis M. Robust estimation of rigid-body 3-D motion parameters based on point correspondences. IEEE Trans. Circuits Syst. Video Techn., 2000, vol. 106, no. 4, pp. 541–549. doi: 10.1109/76.844999 

9.   Keller J.Y., Sauter D. Kalman filter for discrete-time stochactic linear systems subject to intermittent unknown inputs. IEEE Trans. Autom. Contr., 2013, vol. 104, no. 7, pp. 1882–1887. doi: 10.1109/TAC.2013.2264739 

10.   Kryazhimskii A.V., Osipov Yu.S. Modelling of a control in a dynamic system. Engrg. Cybernetics, 1983, vol. 21, no. 2, pp. 38–47.

11.   Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. Basel: Gordon and Breach, 1995, 625 p. ISBN: 9782881249440 .

12.   Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem [Methods of dynamic reconstruction of inputs of controlled systems]. Ekaterinburg: Izd-vo UrO RAN, 2011, 292 p.

13.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1984, 456 p.

14.   Kryazhimskii A.V., Osipov Yu.S. Stable positional reconstruction of a control from measurements of some of the coordinates. In: A.V. Kim and V.I. Maksimov (eds.) Some control and stability problems. Sverdlovsk: Akad. Nauk SSSR Ural. Otdel., 1989. pp. 33–47 (in Russian).

15.   Maksimov V.I. Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem [Problems of dynamic reconstruction of the inputs of infinite-dimensional systems]. Ekaterinburg: Ross. Akad. Nauk Publ., 2000, 305 p. ISBN: 5-7691-1082-1 .

16.   Rozenberg V.L. On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty. AIMS Mathematics, 2020, vol. 5, no. 5, pp. 4108–4120. doi: 10.3934/math.2020263 

17.   Kryazhimskii A.V., Osipov Yu.S. Best approximation of the differentiation operator in the class of nonanticipatory operators. Math. Notes, 1985, vol. 37, no. 2, pp. 109–114. doi: 10.1007/BF01156754 

18.   Vdovin A.Yu. K zadache vosstanovleniya vozmushcheniya v dinamicheskoi sisteme [On the problem of reconstruction of perturbation in a dynamical system]. Candidate Sci. (Phys.–Math.) Dissertation. Sverdlovsk: UrO AN SSSR, 1989, 117 p.

Cite this article as: V.L. Rozenberg. On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 197–207.