V.P. Zastavnyi, A.S. Levadnaya. Power wight integrability for sums of moduli of blocks from trigonometric series ... P. 125-133.

The following problem is studied: find conditions on sequences $\{\gamma(r)\}$, $\{n_j\}$, and $\{v_j\}$ under which, for any sequence$\{b_k\}$ such that $\sum_{k=r}^{\infty}|b_k-b_{k+1}|\leq\gamma(r)$, $b_k\to 0$, the integral $\int_0^\pi U^p(x)/{x^q}dx$ is convergent, where $p>0$, $q\in[1-p;1)$, and $U(x):=\sum_{j=1}^{\infty}\left|\sum_{k=n_j}^{v_j}b_k \sin kx\right|$. In the case $\gamma(r)={B}/{r}$, $B>0$, this problem was studied and solved by S.A.Telyakovskii. In the case where $p\ge 1$, $q=0$, $v_j=n_{j+1}-1$, and the sequence $\{b_k\}$ is monotone, A.S.Belov obtained a criterion for the belonging of the function $U(x)$ to the space$L_p$. In Theorem1 of the present paper, we give sufficient conditions for the convergence of the above integral, which for $\gamma(r)= B/{r}$, $B>0$, coincide with Telyakovskii's sufficient conditions. In the case $\gamma(r)= O(1/{r})$, Telyakovskii's conditions may be violated, but the application of Theorem1 guarantees the convergence of the integral. The corresponding examples are given in the last section of the paper. The question on necessary conditions for the convergence of the integral $\int_0^\pi U^p(x)/{x^q}dx$, where $p>0$ and $q\in[1-p;1)$, remains open.

Keywords: trigonometric series, sums of moduli of blocks, power weight.

The paper was received by the Editorial Office on May 15, 2017.

Viktor Petrovich Zastavnyi, Dr. Phys.-Math. Sci., Prof., Donetsk National University, Universitetskaya str. 24, Donetsk, 83001, Ukraine, e-mail: zastavn@rambler.ru

Antonina Sergeevna Levadnaya, doctoral student, Donetsk National University, Universitetskaya str. 24, Donetsk, 83001, Ukraine, e-mail: last.dris@mail.ru
 

REFERENCES

1.   Belov A.S. Some properties of the sum of the moduli of the terms of a grouped trigonometric series with monotonic coefficients. Vestn. Ivanov. gos. un-ta. Ser. Biologiya, khimiya, fizika, matematika, 2006. No. 3. pp. 107–121 (in Russian).

2.   Belov A.S. Some properties of the sum of the moduli of the terms of a grouped trigonometric series. Sb. Math., 2012, vol. 203, no. 6, pp. 798–825. doi: https://doi.org/10.4213/sm7851 .

3.   Belov A.S., Telyakovskii S.A. Refinement of the Dirichlet–Jordan and Young’s theorems on Fourier series of functions of bounded variation. Sb. Math., 2007, vol. 198, no. 6, pp. 777–791.
doi: https://doi.org/10.4213/sm2420 .

4.   Zastavnyi V.P. Estimates for sums of moduli of blocks in trigonometric Fourier series. Proc. Steklov Inst. Math. (Suppl.), 2011, vol. 273, suppl. 1, pp. 190–204. doi: 10.1134/S0081543811050208 .

5.   Zygmund A. Trigonometric series, vol. I, II. Cambridge: Cambridge Univ. Press, 1959. 784 p. ISBN-10: 0521890535. Translated under the title Trigonometricheskie ryady. M.: Mir Publ., 1965. Vol. I. 616 c.

6.   Leindler L. On the uniform convergence and boundedness of a certain class of sine series. Anal. Math., 2001, vol. 27, no. 4, pp. 279–285.

7.   Popov A.Yu., Telyakovskii S.A. On estimates for partial sums of Fourier series of functions of bounded variation. Russian Math. (Iz. VUZ), 2000, vol. 44, no. 1, pp. 50–54.

8.   Telyakovskii S.A. On partial sums of Fourier series of Functions of bounded variation. Proc. Steklov Inst. Math., 1997, vol. 219, pp. 372–381.

9.   Telyakovskii S.A. Some properties of Fourier series of functions with bounded variation. East J. Approx., 2004, vol. 10, no. 1–2, pp. 215–218.

10.   Telyakovskii S.A. Some properties of Fourier series of functions with bounded variation. II, Proc. Steklov Inst. Math. (Suppl.), 2005, suppl. 2, pp. 188–195.

11.   Telyakovskii S.A., On the properties of blocks of terms of the series ∑ 1/k sinkx. Ukr. Math. J., 2012, vol. 64, no. 5, pp. 816–822.

12.   Telyakovskii  S.A. An addition to V.P. Zastavnyi’s paper “Estimates for sums of moduli of blocks in trigonometric Fourier series”. Tr. Inst. Math. Mekh. UrO RAN, 2015, vol. 21, no. 4, pp. 277–281 (in Russian).

13.   Trigub R.M. A note on the paper of Telyakovskii “Certain properties of Fourier series of functions with bounded variation”. East J. Approx., 2007, vol. 13, no. 1, pp. 1–6.

14.   Edwards R.E. Fourier series. A modern introduction, vol. 1. New York, Heidelberg, Berlin: Springer-Verlag, 1979, Ser. Grad. Texts in Math., 64, 228 p. doi: 10.1007/978-1-4612-6208-4 . Translated under the title “ Ryady Fur’e v sovremennom izlozhenii”. Moscow: Mir Publ., 1985, vol. 1, 264 p.