H. Akca, V.I. Maksimov. Stable boundary control of a parabolic equation ... P. 7-18

A problem of boundary control is considered for a differential equation with distributed parameters. It is required to design an algorithm that forms a feedback control and guarantees a prescribed quality of the controlled process. More exactly, the solution of this equation should track the solution of another equation, which is subject to an unknown perturbation. Methods for solving problems of this type for systems described by ordinary differential equations are well known and are presented, in particular, within the theory of positional control. In the present paper, we study a tracking problem in which the role of the control object is played by an equation with distributed parameters. It is assumed that the solutions of the equations are measured with an error, and the only available information about the perturbation is that it is an element of the space of functions summable with the square of the Euclidean norm; i.e., the perturbation can be unbounded. Taking into account these features of the problem, we design solution algorithms that are stable under information disturbances and computational errors. The algorithms are based on a combination of elements of the theory of ill-posed problems with the extremal shift method known in the theory of positional differential games.

Keywords: systems with distributed parameters, control

Received January 31, 2021

Revised February 10, 2021

Accepted February 15, 2021

Haydar Akca, Prof., Abu Dhabi University, College of Arts and Sciences, Department of Applied Sciences and Mathematics, P.O. Box 59911, Abu Dhabi, UAE, e-mail: akcahy@yahoo.com

Vyacheslav Ivanovich Maksimov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: maksimov@imm.uran.ru

REFERENCES

1.   Lasiecka I., Triggiani R. Control theory for partial differential equations: Continuous and approximation theories. I: Abstract parabolic systems. Cambridge: Cambridge University Press, 2000, 648 p. doi: 10.1017/CBO9781107340848 

2.   Tucshak M., Weiss G. Observation and control for operator semigroups. Berlin: Birkh$\ddot{\mathrm{a}}$user, 2009, 483 p. doi: 10.1007/978-3-7643-8994-9 

3.   Pandolfi L. Distributed systems with persistent memory: Control and moment problems. Berlin: Springer, 2014, 152 p. doi: 10.1007/978-3-319-12247-2 

4.   Fursikov A.V. Optimal control of distributed systems. Theory and applications. Providence: American Mathematical Soc., 1999, 305 p. ISBN: 082189790X . Original Russian text published in Fursikov A.V. Optimal’noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya. Novosibirsk: Nauchnaya kniga Publ., 1999, 360 p.

5.   Tr$\ddot{\mathrm{o}}$ltzsch F. Optimal control of partial differential equations. Theory, methods and applications. Providence, Rhode Island: AMS, 2010, 408 p. ISBN: 0821849042 .

6.   Korbich Yu.S., Maksimov V.I., Osipov Yu.S. Dynamic simulation of controls in certain parabolic systems. J. Appl. Math. Mech., 1990, vol. 54, no. 3, pp. 293–297. doi: 10.1016/0021-8928(90)90127-V 

7.   Osipov Y., Pandolfi L., Maksimov V. The problem of robust boundary control: the case of Dirichlet boundary conditions. Dokl. Math., 2000, vol. 62, no. 2, pp. 205–207.

8.   Maksimov V., Pandolfi L. Dynamical reconstruction of inputs for contraction semigroup systems: boundary input case. J. Optim. Theory Appl., 1999, vol. 103, no. 2, pp. 401–420. doi: 10.1023/A:1021709004193 

9.   Osipov Yu.S., Pandolfi L., Maksimov V.I. Problems of dynamic reconstruction and robust boundary control: the case of Dirichlet boundary conditions. J. Inverse Ill-Posed Probl., 2001, vol. 9, no. 2, pp. 149–162. doi: 10.1515/jiip.2001.9.2.149 

10.   Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. N.N. Krasovskii’s extremal shift method and problems of boundary control. Autom. Remote Control, 2009, vol. 70, no. 4, pp. 577–588. doi: 10.1134/S0005117909040043 

11.   Maksimov V.I., Osipov Yu.S. Infinite-horizon boundary control of distributed systems. Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 14–25. doi: 10.1134/S0965542516010139 

12.   Maksimov V. On reconstruction of boundary controls in a parabolic equation. Adv. Differ. Equ., 2009, vol. 14, no. 11–12, pp. 1193–1211.

13.   Maksimov V.I. On the tracking of a trajectory and a control by the feedback principle. In: Control Theory and its Applications. Vito G. Massari (ed.), N Y: Nova Science Publ., 2011, pp. 55–81.

14.   Schl$\ddot{\mathrm{o}}$gl F. Chemical reaction models for non-equilibrium phase-transitions. Zeitschrift f$\ddot{u}$r Physik, 1972, vol. 253, pp. 147–161. doi: 10.1007/BF01379769 

15.   Gugat M., Tr$\ddot{\mathrm{o}}$ltzsch F. Boundary feedback stabilization of the Schl$\ddot{\mathrm{o}}$gl system. Automatica, 2015, vol. 51, pp. 192–199. doi: 10.1016/j.automatica.2014.10.106 

16.   Buchholz R., Engel H., Kammann E., Tr$\ddot{\mathrm{o}}$ltzsch F. On the optimal control of the Schl$\ddot{\mathrm{o}}$gl-model. Comput. Optim. Appl., 2013, vol. 56, no. 1, pp. 153–185. doi: 10.1007/s10589-013-9550-y 

17.    Casas E., Rull C., Tr$\ddot{\mathrm{o}}$ltzsch F. Sparse optimal control of the Schl$\ddot{\mathrm{o}}$gl and FitzHugh–Nagumo systems. Comput. Methods Appl. Math., 2013, vol. 13, no. 4, pp. 415–442. doi: 10.1515/cmam-2013-0016 

18.   Breiten T., Kunisch K. Riccati based feedback control of the monodomain equations with the FitzHugh–Nagumo model. SIAM J. Contr. Optim., 2014, vol. 52, no. 6, pp. 4057–4081. doi: 10.1137/140964552 

Cite this article as: H. Akca, V.I. Maksimov. Stable boundary control of a parabolic equation, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 7–18.