A.Kh. Khachatryan, Kh.A. Khachatryan, H.S. Petrosyan. Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem ... P. 188-206

We study a class of nonlinear integro-differential equations of convolution type, which have direct application in econometrics. Some qualitative properties of the solution are studied: its asymptotic behavior, monotonicity, and smoothness. A specific example of an applied nature is given.

Keywords: wealth distribution, asymptotics, wavefront, solution limit, monotonicity

Received October 9, 2020

Revised November 8, 2020

Accepted January 11, 2021

Funding Agency: The research of the second and third authors was supported by the Russian Science Foundation (project no. 19-11-00223).

Aghavard Khachaturovich Khachatryan, Dr. Phys.-Math. Sci., Armenian National Agrarian University, 0009, Yerevan, Republic of Armenia, e-mail: aghavard59@mail.ru

Khachatur Aghavardovich Khachatryan, Dr. Phys.-Math. Sci., Institute of Mathematics, National Academy of Sciences of Armenia, 0019, Yerevan, Republic of Armenia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119991 Russia,
e-mail: Khach82@rambler.ru

Haykanush Samvelovna Petrosyan, Cand. Sci. (Phys.-Math.), Armenian National Agrarian University, 0009, Yerevan, Republic of Armenia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119991 Russia, e-mail: Haykuhi25@mail.ru

REFERENCES

1.   Sargan I.D. The distribution of wealth. Econometrics, 1957, vol. 25, no. 4, pp. 568–590. doi: 10.2307/1905384 

2.   Bellman R., Cooke K.L. Differential-difference equations. New York: Academic Press, 1963, 462 p. ISBN: 9780080955148 . Translated to Russian under the title Differentsial’no-raznostnye uravneniya. Moscow: Mir Publ., 1967, 548 p.

3.   Mondelbrot B. The Pareto–Levy law and distribution of income. Int. Economic Rev., 1960, vol. 1, no. 2, pp.  79–106. doi: 10.2307/2525289 

4.   Champernowne D.G. A model of income distribution. Economic J., 1953, vol. 63, no. 250, pp. 318–351. doi: 10.2307/2227127 

5.   Chen Yu, Liao Yujie, Zhang Qi and Zhang Weiping. Ruin probabilities for the phase-type dual model perturbed by diffusion. Communications in Statistics - Theory and Methods, 2020, pp. 1–19. doi: 10.1080/03610926.2020.1737126 

6.   Daliri Birjandi M.H., Saberi-Nadjafi J., Ghorbani A. An efficient numerical method for a class of nonlinear Volterra integro-differential equations. J. Appl. Math., 2018, vol. 2018, art.-no. 7461058, 7 p. doi: 10.1155/2018/7461058 

7.   Khachatryan A.Kh., Khachatryan Kh.A. On an integro-differential equation in the problem of wealth distribution. Ekonomika i Mat. Metody TsEMI RAN, 2009, vol. 45, no. 4, pp. 84–96.

8.   Khachatryan A.Kh., Khachatryan Kh.A. On the solvability of a nonlinear integro-differential equation arising in the income distribution problem. Comput. Math. and Math. Phys., 2010, vol. 50, no. 10, pp. 1702–1711. doi: 10.1134/S0965542510100064 

9.   Khachatryan A., Khachatryan Kh. On solvability of a nonlinear problem in theory of income distribution. Eurasian Math. J., 2011, vol. 2, no. 2, pp. 75–88.

10.   Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. Two volumes in one, translated from the first Russian edition 1957–1961. United States: Martino Fine Books, 2012, 280 p. ISBN: 1614273049 . Original Russian text published in Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza. Moscow: Nauka Publ., 1980.

11.   Khachatryan Kh.A., Petrosyan H.S. On the solvability of a class of nonlinear Hammerstein–Stieltjes integral equations on the whole line. Proc. Steklov Inst. Math., 2020, vol. 308, pp. 238–249. doi: 10.1134/S0081543820010198 

12.   Diekmann O. Thresholds and travelling waves for the geographical spread of infection. J. Math. Biology., 1978, vol. 6, no. 2, pp. 109–130. doi: 10.1007/BF02450783 

13.   Diekmann O. Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eq., 1979, vol. 33, no. 1, pp. 58–73. doi: 10.1016/0022-0396(79)90080-9 

14.   Diekmann O., Kaper H.G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Analysis: Theory, Methods & Applications, 1978, vol. 2, no. 6, pp. 721–737. doi: 10.1016/0362-546X(78)90015-9 

15.   Diekmann O., Gyllenberg M. Equations with infinite delay: Blending the abstract and the concrete. J. Diff. Eq., 2012, vol. 252, no. 2, pp. 819–851. doi: 10.1016/j.jde.2011.09.038 

16.   Budak B.M., Fomin S.V. Multiple integrals, field theory and series. An advanced course in higher mathematics. Moscow: Mir Publ., 1973, 640 p. ISBN: 0828520968 . Original Russian text published in Budak B.M., Fomin S.V. Kratnye integraly i ryady. Moscow: Nauka Publ., 1966.

17.   Gevorkyan G.G., Engibaryan N.B. New theorems for the renewal integral equation. J. Contemp. Math. Anal., Armen. Acad. Sci., 1997, vol. 32, no. 1, pp. 2–16.

18.   Engibaryan N.B. Renewal equations on the semi-axis. Izv. Math., 1999, vol. 63, no. 1, pp. 57–71. doi: 10.1070/im1999v063n01ABEH000228 

19.   Rudin W. Functional Analysis. New York: McGraw-Hill, 1973, 397 p. ISBN: 978-0070542259 . Translated to Russian under the title Funktsional’nyi analiz. Moscow: Mir Publ., 1975, 444 p.

20.   Polya G., Szego G. Problems and theorems in analysis. Vol. 1. Berlin: Springer, 1972, 392 p. doi: 10.1007/978-1-4757-1640-5 . Translated to Russian under the title Zadachi i teoremy iz analiza. T. 1. Moscow: Nauka Publ., 1978, 392 p.

Cite this article as: A.Kh. Khachatryan, Kh.A. Khachatryan, H.S. Petrosyan. Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2021, vol. 27, no. 1, pp. 188–206.