A.V. Konygin. On а question concerning the tensor product of modules ... P. 103-109

Assume that $G$ is a group, $K$ is an algebraically closed field, and $V_1$ and $V_2$ are $KG$-modules. The following question is considered: under what constraints on $G$, $K$, $V_1$, and $V_2$ does $V_1 \otimes V_2 \cong V_1 \otimes I$ hold, where $I$ is the trivial $KG$-module (of dimension $\dim(V_2)$)? Earlier, when considering a problem of P. Cameron on finite primitive permutation groups, the author obtained and used some results on this question.This work continues the study of the question. The following results were obtained.
1. Assume that $G$ is a nontrivial connected reductive algebraic group, and $V_1$ and $V_2$ are faithful semisimple $KG$-modules. Then $V_1 \otimes V_2 \ncong V_1 \otimes I$.
2. Assume that $G$ is a nontrivial finite group, $\mathrm{char} (K) = 0$, $V_1$ is a $KG$-module, and $V_2$ is a faithful $KG$-module. Then $V_1 \otimes V_2 \cong V_1 \otimes I $ if and only if $V_1$ is the direct sum of $\frac {\dim (V_1)} {|G|}$ regular $KG$-modules.
In addition, we consider the question of the possibility that $V_1 \otimes V_2 \cong V_1 \otimes I$ in the case where $G = SL_2(p^n)$, $V_1$ and $V_2$ are simple $KG$-modules, and $\mathrm{char}(K) = p$.

Keywords: finite group, algebraic group, group representation, tensor product of modules

Received November 22, 2020

Revised December 30, 2020

Accepted January 11, 2021

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00456).

Anton Vladimirovich Konygin, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia e-mail: konygin@imm.uran.ru

REFERENCES

1.   Cameron P.J. Suborbits in transitive permutation groups. In: Hall M., van Lint J.H. (eds), Combinatorics. NATO Advanced Study Institutes Series, vol. 16. Dordrecht: Springer, 1974, pp. 419–450. doi: 10.1007/978-94-010-1826-5_20 

2.   Curtis C.W., Reiner I. Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, vol. XI. N Y; London: Interscience Publishers, 1962, 689 p. ISBN: 978-0-8218-4066-5 .

3.   Doty S., Henke A. Decomposition of tensor products of modular irreducibles for $SL_2$. Q. J. Math., 2005, vol. 56, no. 2, pp. 189–207. doi: 10.1093/qmath/hah027 

4.   Fulton W., Harris J. Representation theory: A first course. Graduate Texts in Mathematics, Readings in Mathematics, vol. 129. New York: Springer, 2004, 551 p. doi: 10.1007/978-1-4612-0979-9 

5.   Jantzen J.C. Representations of algebraic groups. Mathematical Surveys and Monographs, vol. 107. Providence: American Mathematical Society, 2003, 576 p. ISBN: 978-0-8218-4377-2 .

6.   Humphreys J.E. Introduction to Lie algebras and representation theory. New York: Springer, 1980, 173 p. ISBN: 0-387-90052-7/,.

7.   Humphreys J.E. Modular representations of finite groups of Lie type. Cambridge: Cambridge University Press, 2011, 206 p. doi: 10.1017/CBO9780511525940 

8.   Liebeck M.W., Nikolov N., Shalev A. Groups of Lie type as products of $SL_2$ subgroups. J. Algebra, 2011, vol. 326, no. 1, pp. 201–207. doi: 10.1016/j.jalgebra.2008.12.030 

9.   Malle G., Testerman D. Linear algebraic groups and finite groups of Lie type. Cambridge: Cambridge Univ. Press, 2011, 309 p. doi: 10.1017/CBO9780511994777 

Cite this article as: A.V. Konygin. On a question concerning the tensor product of modules, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 1, pp. 103–109.