D.B. Davletov, O.B. Davletov, R.R. Davletova, A.A. Ershov. Convergence of eigenelements in a Steklov type boundary value problem for the Lame operator ... P. 37-47

A Steklov type boundary value problem is studied for the Lam$\acute{e}$ operator in a half-strip with a small hole. On the lateral boundaries of the half-strip and on the boundary of the small hole, homogeneous Dirichlet boundary conditions are specified, and the Steklov spectral condition is specified on the base of the half-strip. A theorem is proved on the convergence of the eigenelements of this problem to the solution of the limit problem (in the half-strip without a hole) as a small parameter ε > 0 characterizing the diameter of the hole tends to zero. To prove the theorem, we introduce the space of infinitely differentiable vector functions with a finite Dirichlet integral over the half-strip and prove a number of auxiliary statements. The Dirichlet integral for a vector function is defined as the sum of the Dirichlet integrals of the components. Among the auxiliary statements, in particular, it is proved that the weak convergence in the metric of the introduced space of a sequence of functions defined on the half-strip implies the convergence of their restrictions to the base of the half-strip in the metric of the space $L_2$. In addition, it is proved that, for the solutions of Steklov type boundary value problems for the Lam$\acute{e}$ operator in a half-strip with a small hole, the weak convergence of the restrictions to the base of the half-strip implies strong convergence in the same domain. For each value of the parameter ε, an operator is defined for the restriction of the solutions of the considered boundary value problems to the base of the half-strip. The convergence of the sequence of inverses of the restriction operators is also proved as ε → 0. A physical interpretation of the solution of the singularly perturbed boundary value problem considered in the paper is that this solution simulates the deformation vector of an elastic homogeneous isotropic medium filling a two-dimensional region with a small hole. The Lam$\acute{e}$ equation is an equilibrium equation under which a stationary state of an elastic medium in the form of a plate can be maintained. The Dirichlet boundary conditions at the lateral boundaries of the half-strip and at the boundary of the small hole can be interpreted as a rigid fixation of the elastic plate. The spectral Steklov condition specified at the base of the strip is a complex elastic fixation. The eigenvalues and the corresponding eigenvector functions of the boundary value problem characterize the possible natural vibrations of the elastic plate.

Keywords: boundary value problem, Steklov spectral condition, Lame operator, eigenelements, small parameter

Received October 19, 2020

Revised February 11, 2021

Accepted February 15, 2021

Dmitrii Borisovich Davletov , Cand. Phys.-Math. Sci., Ufa State Aviation Technical University, Ufa, 450008 Russia, e-mail: davletovdb@mail.ru

Oleg Borisovich Davletov, Ufa State Petroleum Technological University, Ufa, 450064, Russia, e-mail: davolegus@mail.ru

Ruzalina Razgatovna Davletova , Ufa Branch of the Financial University under the Government of the Russian Federation, Ufa, 450015, Russia, e-mail: ruzal89@mail.ru

Aleksandr Anatol’evich Ershov, Cand. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ale10919@yandex.ru

REFERENCES

1.   Butuzov V.F. The asymptotic behavior of the solutions of singularly perturbed equations of elliptic type in a rectangular domain. Differ. Uravn., 1975, vol. 11, no. 6, pp. 1030–1041 (in Russian).

2.   Hempel R., Seco L., Simon B. The essential spectrum of Neumann Laplacians on some bounded singular domains. J. Funct. Anal., 1991, vol. 102, no. 2, pp. 448–483. doi: 10.1016/0022-1236(91)90130-W 

3.   Gadyl’shin R.R. Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition. Math. Notes, 1992, vol. 52, no. 4, pp. 1020–1029. doi: 10.1007/BF01210435 

4.   Gadyl’shin R.R. Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates. Math. Notes, 1993, vol. 54, no. 6, pp. 1192–1199. doi: 10.1007/BF01209080 

5.   Chechkin G.A. Averaging of boundary value problems with a singular perturbation of the boundary conditions. Russian Acad. Sci. Sb. Math., 1994, vol. 79, no. 1, pp. 191–222. doi: 10.1070/SM1994v079n01ABEH003608 

6.   Borisov D.I. Boundary-value problem in a cylinder with frequently changing type of boundary conditions. Sb. Math., 2002, vol. 193, no. 7, pp. 977–1008. doi: 10.1070/SM2002v193n07ABEH000666 

7.   Bikmetov A.R., Gadyl’shin R.R. On the spectrum of the Schr$\ddot{\mathrm{o}}$dinger operator with large potential concentrated on a small set. Math. Notes, 2006, vol. 79, no. 5, pp. 729–733. doi: 10.1007/s11006-006-0084-9 

8.   Samarckiy A.A. On the influence of fixing on eigenfrequencies of bounded volumes. Dokl. Akad. Nauk SSSR, 1948, vol. 63, no. 6, pp. 631–634 (in Russian).

9.   Dnestrovsky Yu.N. On the change of eigenvalues under the change of the domain boundary. Moscow University Mathematics Bulletin, 1964, no. 9, pp. 61–74 (in Russian).

10.   Il’in A.M. A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity. Math. USSR-Sb., 1977, vol. 32, no. 2, pp. 227–244. doi: 10.1070/SM1977v032n02ABEH002380 

11.   Maz’ya V.G., Nazarov S.A., Plamenevskii B.A. Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. Math. USSR-Izv., 1985, vol. 24, no. 2, pp. 321–345. doi: 10.1070/IM1985v024n02ABEH001237 

12.   Lanza de Cristoforis M. Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Analysis (Germany), 2008, vol. 28, no. 1, pp. 63–93. doi: 10.1524/anly.20080903 

13.   Davletov D.B. Asymptotics of eigenvalues of the two-dimensional Dirichlet boundary-value problem for the Lame operator in a domain with a small hole. Math. Notes, 2013, vol. 93, no. 4, pp. 545–555. doi: 10.1134/S000143461303022X 

14.   Kamotskii I.V., Nazarov S.A. Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators. American Mathematical Society Translations: Ser. 2, 2000, vol. 199, pp. 127–182. doi: 10.1090/trans2/199/04 

15.   Davletov D.B., Davletov O.B. Convergence of eigenelements of a Steklov-type problem in a half-band with a small hole. J. Math. Sci., 2019, vol. 241, no. 5, pp. 549–555. doi: 10.1007/s10958-019-04444-1 

16.   Nazarov S.A. Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains. St. Petersburg Math. J., 2015, vol. 26, no. 2, pp. 273–318. doi: 10.1090/S1061-0022-2015-01339-3 

17.   Nazarov S.A. Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold. Siberian Math. J., 2010, vol. 51, no. 5, pp. 866–878. doi: 10.1007/s11202-010-0087-3 

18.   Borisov D.I. On a  PT-symmetric waveguide with a pair of small holes. Proc. Steklov Inst. Math. (Suppl.), 2013, vol. 281, suppl. 1, pp. 5–21. doi: 10.1134/S0081543813050027 

19.   Landau L.D., Lifshitz E.M. Course of theoretical physics. Vol. 7. Theory of elasticity. Oxford: Butterworth-Heinemann, 1986, 196 p. ISBN: 075062633X . Original Russian text published in Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Tom 7. Teoriya uprugosti. Moscow: Fizmatlit Publ., 2003, 264 p. ISBN: 5-9221-0122-6 .

20.   Oleinik O.A., Iosif’yan G.A., Shamaev A.S. Matematicheskie zadachi teorii sil’no neodnorodnykh uprugikh sred [Mathematical problems in the theory of strongly inhomogeneous elastic media]. Moscow: Moscow State University Publ., 1990, 311 p. ISBN: 5-211-00947-9 .

21.   Mikhailov V.P. Partial differential equations. Moscow: Mir Publ., 1978, 396 p. ISBN: 0828507341 . Original Russian text published in Mikhailov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh. Moscow: Nauka Publ., 1976, 391 p.

22.   Kato T. Perturbation theory for linear operators. Berlin: Springer-Verlag, 1995, 619 p. doi: 10.1007/978-3-642-66282-9 . Translated to Russian under the title Teoriya vozmushchenii lineinykh operatorov. Moscow: Mir Publ., 1972, 740 p.

23.   Davletov D.B., Davletov O.B., Sadykova R.R. On the asymptotics of the eigenvalues of a singularly perturbed boundary value problem of Steklov type for Laplacians. Herald of Omsk University, 2018, vol. 23, no. 3, pp. 20–27 (in Russian).

Cite this article as: D.B. Davletov, O.B. Davletov, R.R. Davletova, A.A. Ershov. Convergence of eigenelements in a Steklov type boundary value problem for the Lame operator. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 1, pp. 37–47.