V.M. Sinitsin, A.I. Sozutov. On the connection of some groups generated by 3-transpositions with Coxeter groups ... P. 234-243

Coxeter groups, more commonly known as reflection-generated groups, have numerous applications in various fields of mathematics and beyond. Groups with Fischer's 3-transpositions are also related to many structures: finite simple groups, triple graphs, geometries of various spaces, Lie algebras, etc. The intersection of these classes of groups consists of finite Weyl groups $W(A_n)\simeq S_{n+1}$, $W(D_n)$, and $W(E_n)$ ($n=6,7,8$) of simple finite-dimensional algebras and Lie groups. The paper continues the study of the connection between the finite groups $Sp_{2l}(2)$ and $O^\pm_{2l}(2)$ from clauses (ii)-(iii) of Fischer's theorem and infinite Coxeter groups. The organizing basis of the connection under study is general Coxeter tree graphs $\Gamma_n$ with vertices $\{ 1,\ldots, n\}$. To each vertex $i$ of the graph $\Gamma_n$, we assign the generating involution (reflection) $s_i$ of the Coxeter group $G_n$, the basis vector $e_i$ of the space $V_n$ over the field $F_2$ of two elements, and the generating transvection $w_i$ of the subgroup $W_n=\langle w_1,\ldots,w_n\rangle$ of $SL(V_n)=SL_n(2)$. The graph $\Gamma_n$ corresponds to exactly one Coxeter group of rank $n$: $G_n=\langle s_1,\ldots,s_n\mid (s_is_j)^{m_{ij}},\, m_{ij}\leq 3\rangle$, where $m_{ii}=1$, $1\leq i<j\leq n$, and $m_{ij}=3$ or $m_{ij}=2$ depending on whether $\Gamma_n$ contains the edge $(i,j)$. The form defined by the graph $\Gamma_n$ turns $V_n$ into an orthogonal space whose isometry group $W_n$ is generated by the mentioned transvections (3-transpositions) $\{ w_1,\ldots, w_n\}$; in this case, the relations $(w_iw_j)^{m_{ij}}=1$ hold in $W_n$ and, therefore, the mapping $s_i\to w_i$ ($i=1,\ldots,n$) is continued to the surjective homomorphism $G_n\to W_n$. In the authors' previous paper, for all groups $W_n=O^\pm_{2l}(2)$ ($n=2l\geq 6$) and $W_n= Sp_{2l}(2)$ ($n=2l+1\geq 7$), an algorithm was given for enumerating the corresponding tree graphs $\Gamma_n$ by grouping them according to $E$-series of nested graphs. In the present paper, a close genetic connection is established between the groups $O^\pm_{2l}(2)$ and $Sp_{2l}(2)\times \mathbb{Z}_2$ ($3\leq l\leq 10$) and the corresponding (infinite) Coxeter groups $G_n$ with the difference in their genetic codes by exactly one gene (relation). For the groups $W_n$ with the graphs $\Gamma_n$ from the $E$-series $\{E_n\}$, $\{ I_n\}$, $\{ J_n\}$, and $\{ K_n\}$, additional word relations are written explicitly.

Keywords: groups with 3-transpositions, Coxeter graphs and groups, genetic codes

Received May 19, 2020

Revised November 4, 2020

Accepted November 16, 2020

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 A.)

Sozutov Anatoly Ilich, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sozutov_ai@mail.ru

Vladimir Mihaylovich Sinitsin, Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sinkoro@yandex.ru

REFERENCES

1.   Fischer B. Finite groups generated by 3-transpositions. WMI Preprints, Coventry (UK): University of Warwick, 1969.

2.   Gorenstein D. Finite simple groups. An introduction to their classification. University Series in Mathematics. New York: Plenum Publishing Corp., 1982, 333 p. ISBN: 0-306-40779-5 . Translated to Russian under the title Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu. Moscow: Mir Publ., 1985, 352 p.

3.   Hall J.I. Graphs, geometry, 3-transposition, and symplectic $F_2$-transvection groups. Proc. London Math. Soc., 1989, vol. 58, no. 1, pp. 89–111. doi: 10.1112/plms/s3-58.1.89 

4.   Sozutov A.I. Groups of type $\Sigma _4$ generated by 3-transpositions. Siberian Math. J., 1992, vol. 33, no. 1, pp. 117–124. doi: 10.1007/BF00972943 

5.   McLaughlin J. Some subgroups of $SL_n(F_2)$. Ill. J. Math., 1969, vol. 13, no. 1, pp. 108–115. doi: 10.1215/ijm/1256053741 

6.   Aschbacher M. 3-transposition groups. Cambridge: Cambridge University Press, 1997, 260 p. ISBN: 0-521-57196-0 .

7.   Matsuo A. 3-transposition groups of symplectic type and vertex operator algebras. J. Math. Soc. Japan, 2005, vol. 57, no. 3, pp. 639–649. doi: 10.2969/jmsj/1158241926 

8.   Sozutov A.I., Kuznetsov A.A., Sinitsin V.M. Systems of generators of some groups with 3-transpositions. Sib. Elektron. Mat. Izv., 2013, vol. 10, pp. 285–301. doi: 10.17377/semi.2013.10.022 . (in Russian)

9.   Sozutov A.I. On Lie algebras with monomial basis. Siberian Math. J., 1993, vol. 34, no. 5, pp. 959–971. doi: 10.1007/BF00971409 

10.   Hall J.I., Shpectorov S. The spectra of finite 3-transpositions groups [e-resource]. 2018. 35 p. Available at arXiv:1809.03696 .

11.   Griess R.L., Jr. A vertex operator algebra related to $E_8$ with avtomorphism group $O^+(10,2)$. In: The Monster and Lie algebras. Ohio State Univ. Math. Res. Inst., vol. 7. Berlin: Publ. de Gruyter, 1998, pp. 43–58. ISBN: 9783110161847 .

12.   Cuypers H., Horn M., in ′t panhuis J., Shpectorov S. Lie algebras and 3-transpositions [e-resource]. Available at arXiv: 1104.0536. 2011. 23 p.; J. Algebra, 2012, vol. 368, pp. 21–39. doi: 10.1016/j.jalgebra.2012.06.010 

13.   Bourbaki N. Groupes et algebres de Lie (Chapt. IV–VI). Paris: Hermann, 1968, 282 p. doi: 10.1007/978-3-540-34491-9 . Translated to Russian under the title Gruppy i algebry Li (glavy IV – VI). Moscow: Mir Publ., 1972, 334 p.

14.   Coxeter H.S.M., Moser W.O.J Generators and Relations for Discrete Groups. Berlin; Heidelberg: Springer-Verlag, 1972, 164 p. doi: 10.1007/978-3-662-21946-1 . Translated to Russian under the title Porozhdayushchie elementy i opredelyayushchie elementy diskretnykh grupp. Moscow: Nauka Publ., 1980, 240 p.

15.   Kondrat’ev A.S. Gruppy i algebry Li (Lie groups and Lie algebras). Ekaterinburg: UrO RAN Publ., 2009, 310 p. ISBN: 978-5-7691-2111-1 .

16.   О’Меага О.Т. Symplectic groups. Providence: American Math. Soc, 1978, 125 p. ISBN: 0-8218-1516-4 . Translated to Russian under the title Lektsii o simplekticheskikh gruppakh. Moscow: Mir Publ., 1979, 167 p.

17.   Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of finite groups. Oxford: Clarendon Press, 1985, 252 p. ISBN: 0198531990 .

Cite this article as: V.M. Sinitsin, A.I. Sozutov. On the connection of some groups generated by 3-transpositions with Coxeter groups, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 234–243.