S.I. Novikov, V.T. Shevaldin. Extremal interpolation on the semiaxis with the smallest norm of the third derivative ... P. 210-223

The following problem is considered. For a class of interpolated sequences $y=\{y_{k}\}_{k=-\infty}^{+\infty}$ of real numbers such that their third-order divided difference constructed for arbitrary knots $\{x_{k}\}_{k=-\infty}^{+\infty}$ are bounded in absolute value by a fixed positive number, it is required to find a function $f$ having the third derivative almost everywhere and such that $f(x_{k})=y_{k}\ (k\in\mathbb{Z})$ and the third derivative has the smallest $L_{\infty}$-norm. The problem is solved on the positive semiaxis $\mathbb{R}_{+}=(0,+\infty)$ for  geometric grids in which the sequence of steps $h_{k}=x_{k+1}-x_{k}$ $(k\in\mathbb{Z})$ is a geometric progression with ratio~$p$ $(p>1)$; i.e., $h_{k+1}/h_{k}=p$. In the case of a uniform grid $x_{k}=kh\ (h>0,k\in\mathbb{Z})$ on the whole axis $\mathbb{R}$ (i.e., for $p=1$), this problem was solved by Yu.N. Subbotin in 1965 and is known as the Yanenko-Stechkin-Subbotin problem of extremal function interpolation.

Keywords: interpolation, divided difference, splines, difference equation

Received September 30, 2020

Revised October 23, 2020

Accepted November 2, 2020

Funding Agency: This study is a part of the research carried out at the Ural Mathematical Center.

Sergey Igorevich Novikov, Cand.  Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: Sergey.Novikov@imm.uran.ru

Valerii Trifonovich Shevaldin, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: Valerii.Shevaldin@imm.uran.ru

REFERENCES

1.   Gel’fond A.O. Calculus of finite differences. Delhi: Hindustan Publ. Corp., 1971, ser. International Monographs on Advanced Mathematics and Physics, 451 p. Original Russian text published in Gel’fond A.O. Ischislenie konechnykh raznostey. Moscow: Nauka Publ., 1967.

2.   Favard J. Sur l’interpolation. J. Math. Pures Appl., 1940, vol. 19, no. 9, pp. 281–306.

3.   Subbotin Yu.N. On the connection between finite differences and corresponding derivatives. Proc. Steklov Inst. Math., 1965, vol. 78, pp. 24–42 (in Russian).

4.   Subbotin Yu.N. Functional interpolation in the mean with smallest n derivative. Proc. Steklov Inst. Math., 1967, vol. 88, pp. 31–63.

5.   Kunkle Th. Favard’s interpolation problem in one or more variables. Constructive Approxim., 2002, vol. 18, pp. 467–478. doi: 10.1007/s00365-001-0015-7 

6.   Ahlberg J., Nilson E., Walsh J. The theory of splines and their applications. N Y: Acad. Press, 1967, 284 p. ISBN: 9781483222950 . Translated to Russian under the title Teoriya splainov i ee prilozheniya. Moscow: Mir Publ., 1972, 316 p.

7.   Krein M.G. Integral equations on the half-line with a kernel depending on the difference of the arguments. Uspekhi Mat. Nauk, 1958, vol. 13, no. 5(83), pp. 3–120 (in Russian).

8.   Subbotin Yu.N. Extremal problems of functional interpolation, and mean interpolation splines. Proc. Steklov Inst. Math., 1977, vol. 138, pp. 127–185.

Cite this article as: S.I. Novikov, V.T. Shevaldin. Extremal interpolation on the semiaxis with the smallest norm of the third derivative, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 210–223.