N.A. Il’yasov. Some supplements to S.B. Stechkin’s inequalities in direct and inverse theorems on the approximation of continuous periodic functions ... P. 155-181

We give some supplements and comments to inequalities between elements of the sequence of best approximations $\{E_{n-1}(f)\}_{n=1}^{\infty}$ and the $k$th-order moduli of smoothness $\omega_k(f^{(r)};\delta),$ $\delta\in [0,+\infty)$, of a function $f\in C^r(\mathbb T)$, where $k\in \mathbb N,$ $r\in \mathbb Z_+$, $f^{(0)}\equiv f,$ $C^0(\mathbb T)\equiv C(\mathbb T),$ and $\mathbb T=(-\pi,\pi]$, which were published by S.B. Stechkin in 1951 in the study of direct and inverse theorems of approximation of $2\pi$-periodic continuous functions.
In particular, we prove the following results:

(a)  the direct theorem or the Jackson-Stechkin inequality: $E_{n-1}(f)\le C_1(k)\omega_k(f;\pi/n)$, $n\in \mathbb N$, can be strengthened as $E_{n-1}(f)\le \rho_{n}^{(k)}(f)\equiv n^{-k}\max\{\nu^k E_{\nu-1}(f)\colon 1\le \nu\le n\}\le 2^kC_1(k)\omega_k(f;\pi/n),\ n\in \mathbb N$. This inequality is order-sharp on the class of all functions $f\in C(\mathbb T)$ with a given majorant or with a~given decrease order of the modulus of smoothness $\omega_k(f;\delta)$; namely: for any $k\in \mathbb N$ and $\omega\in \Omega_k(0,\pi]$, there exists a function $f_0(\,{\cdot}\,;\omega)\in C(\mathbb T)$ ($f_0$ is even for odd $k$ and is odd for even $k$) such that $\omega_k(f_0;\delta)\asymp C_2(k)\omega(\delta)$,\ $\delta\in (0,\pi]$. Moreover, order equalities hold: $E_{n-1}(f_0)\asymp C_3(k)\rho_n^{(k)}(f_0)\asymp C_4(k)\omega_k(f_0;\pi/n)\asymp C_5(k)\omega(\pi/n),\ n\in \mathbb N$, where $\Omega_k(0,\pi]$ is the class of functions $\omega=\omega(\delta)$ defined on $(0,\pi]$ and such that $0<\omega(\delta)\!\downarrow\!0$ $(\delta\downarrow\!0)$ and $\delta^{-k}\omega(\delta)\!\downarrow$ $(\delta \uparrow)$;

(b)  a necessary and sufficient condition under which the inverse theorem (without the derivatives), or the Salem-Stechkin inequality $\omega_k(f;\pi/n)\le C_6(k)n^{-k}\sum_{\nu=1}^n\nu^{k-1}E_{\nu-1}(f)$,\ $n\in \mathbb N$, holds is Stechkin's inequality $\|T_n^{(k)}(f)\|\le C_7(k) \sum_{\nu=1}^{n}\nu^{k-1}E_{\nu-1}(f),\ n\in \mathbb N$, where $T_n(f)\equiv T_n(f;x)$ is a trigonometric polynomial of best $C(\mathbb T)$-approximation to the function $f$ (i.e., $\|f-T_n(f)\|=E_n(f),\ n\in \mathbb Z_+$);

(c)  the inverse theorem (with the derivatives), or the Vall$\acute{\mathrm{e}}$e-Poussin-Stechkin inequality $\omega_k(f^{(r)};$ $\pi/n)\le C_8(k,r)\big\{ n^{-k}\sum_{\nu=1}^{n}\nu^{k+r-1}E_{\nu-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\}$ for any $n\in \mathbb N$, as well as Stechkin's earlier inequality $E_{n-1}(f^{(r)})\le C_9(r)\big\{ n^r E_{n-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\},\ n\in \mathbb N$, where $E(f;r)\equiv$ \linebreak $ \sum_{n=1}^{\infty}n^{r-1}E_{n-1}(f)<\infty$ (by S.N. Bernstein's theorem, this inequality guarantees that $f$ lies in $C^r(\mathbb T)$, where $r\in\mathbb N$) can be supplemented with the following key inequalities: $\|f^{(r)}\|\le C_{10}(r)E(f;r)$ and $\|T_n^{(r)}(f)\|\le C_{7}(r)\sum_{\nu=1}^n\nu^{r-1}E_{\nu-1}(f)$, $n\in\mathbb N$. Moreover, all the inequalities formulated in this paragraph are pairwise equivalent; i.e., any of these inequalities implies any other and, hence, all the inequalities.

Keywords: best approximation, modulus of smoothness, direct theorem, inverse theorem, order equality, equivalent inequalities, order-sharp inequality on a class

Received June 2, 2020

Revised August 28, 2020

Accepted September 21, 2020

Niyazi Aladdin ogly Il’yasov, Cand. Sci. (Phys.-Math.), Baku State University, Baku, Azerbaijan;
Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia,
e-mail: niyazi.ilyasov@gmail.com

REFERENCES

1.   Stechkin S.B. On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR. Ser. Mat., 1951, vol. 15, no. 3, pp. 219–242 (in Russian).

2.   Stechkin S.B. On the order of the best approximations of continuous functions. Dokl. Akad. Nauk SSSR, 1949, vol. 65, no. 2, pp. 135–137 (in Russian).

3.   Stechkin S.B. A generalization of some S. Bernstein’s inequalities. Dokl. Akad. Nauk SSSR, 1948, vol. 60, no. 9, pp. 1511–1514 (in Russian).

4.   Jackson D.  Uber die Genauigkeit der Annaherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung. Inaugural–Dissertation. Gottingen, 1911, 99 p.

5.   Jackson D. On approximation by trigonometric sums and polynomials. Trans. Amer. Math. Soc., 1912, vol. 13, no. 4, pp. 491–515. doi: 10.2307/1988583 

6.   Jackson D. The theory of approximation. Ser. Amer. Math. Soc. Colloquium Publ., vol. 11. N.-Y.: AMS, 1930, 178 p. ISBN: 978-1-4704-3160-0 .

7.   Zygmund A. Smooth functions. Duke Math. J., 1945, vol. 12, no. 1, pp. 47–76. doi: 10.1215/S0012-7094-45-01206-3 

8.   Vallee Poussin Ch.-J. Lecons sur l’approximation des fonctions d’une variable reelle. Paris: Gauthier–Villars, 1919, 150 p.

9.   Achieser N.I. Theory of approximation, Reprint of the 1956, N Y: Dover Publ., 1992, 307 p. ISBN: 0486671291 . Original Russian text published in Akhiezer N.I. Lektsii po teorii approksimatsii. 1st ed.: Moscow; Leningrad: GITTL, 1947, 324 p.; 2nd ed.: Moscow: Nauka Publ., 1965, 408 p.

10.   Timan A.F. Theory of approximation of functions of a real variable. Oxford; London; N.-Y.: Pergamon Press, 1963, 655 p. ISBN: 048667830X . Original Russian text published in Timan A.F. Teoriya priblizheniya funktsii deystvitel’nogo peremennogo. Moscow: Fizmatgiz Publ., 1960, 624 p.

11.   Bernstein S.N. On properties of homogeneous functional classes. Dokl. AN SSSR, 1947, vol. 57, no. 2, pp. 111–114 (in Russian).

12.   Gheit V.E. Imbedding theorems for certain classes of continuous periodic functions. Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 4 (119), pp. 67–77 (in Russian).

13.   Zhuk V.V. Approksimatsiya periodicheskikh funktsii [Approximation of periodic functions]. Leningrad: Leningrad Univ. Publ., 1982, 368 p. (in Russian).

14.   Natanson G.I., Timan M.F. Geometric means of a sequence of best approximations. Vestn. Leningr. Univ., 1979, ser. 19, no. 4, pp. 50–52 (in Russian).

15.   Natanson I.P. Constructive function theory. Vol. I. Uniform approximation. N Y: Frederick Ungar Publishing Co., 1964, 232 p. ISBN: 9780094551503 . Original Russian text published in Natanson I.P. Konstruktivnaya teoriya funktsii. Moscow; Leningrad: GITTL, 1949, 688 p.

16.   Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami [Introduction to the Theory of Uniform Approximation of Functions by Polynomials]. Moscow: Nauka, 1977, 512 p. (in Russian).

17.   Bary N.K. A treatise on trigonometric series, vols. I,II. Oxford; N Y: Pergamon Press, 1964, vol. 1, 553 p.; vol. 2, 508 p. doi: 10.1002/zamm.19650450531 . Original Russian text published in Bari N.K. Trigonometricheskie ryady. Moscow: Fiz.-Mat.Giz. Publ, 1961, 936 p.

18.   Zhuk V.V. On the one method for summing Fourier series. Fourier series with positive coefficients. In: Studies on Some Problems of Constructive Function Theory, Collection of Scientific Works of the Leningrad Mechanical Institute, no. 50, 1965, pp. 73–92 (in Russian).

19.   Belov A.S. Order estimates for best approximations and moduli of continuity of the sum of a trigonometric series with Quasi-monotone coefficients. Math. Notes, 1992, vol. 51, no. 4, pp. 417–419. doi: 10.1007/BF01250558 

20.   Zygmund A. Trigonometric series. Vols. I & II. Cambridge: Cambridge Univ. Press, 2003, 747 p. ISBN: 0-521-89053-5 . Translated to Russian under the title Trigonometricheskie rjady. Moscow: Mir Publ., 1965, vol. I, 616 p.; vol. II, 538 p.

21.   Riesz M. Eine trigonometrische Interpolationsformel und einige Ungleichungen fur Polynome. Jahresber. Deutsch. Math.-Verein., 1914, bd. 23, s. 354–368. doi: 10.1007/978-3-642-37535-4_13 

22.   Nikol’skii S.M. A generalization of an inequality of S.N. Bernstein. Doklady Akad. Nauk SSSR, 1948, vol. 60, no. 9, pp. 1507–1510 (in Russian).

23.   Timan A.F., Timan M.F. Generalized modulus of continuity and best approximation in the mean. Dokl. Akad. Nauk SSSR, 1950, vol. 71, no. 1, pp. 17–20 (in Russian).

24.   Bari N.K., Stechkin S.B. Best approximations and differential properties of two conjugate functions. Trudy Mosk. Mat. Obsh., 1956, vol. 5, pp. 483–522 (in Russian).

25.   Timan A.F., Timan M.F. On the relation between the smoothness moduli of functions given all along the axis of reals. Dokl. Akad. Nauk SSSR, 1957, vol. 113, no. 5, pp. 995–997 (in Russian).

26.   Salem R. Sur certaines fonctions continues et les proprietes de leurs series de Fourier. Comptes Rendus de L’Acad. des Sci., 1935, vol. 201, no. 16, pp. 703–705.

27.   Salem R. Essais sur les series trigonometriques. Theses le grade de docteur es-sciences mathematiques. Paris, 1940, 85 p.

28.   Bernstein S.N. Best approximation of continuous functions by polynomials of a given degree, I. Soobshcheniya Har’kov. mat. ob-va. Vtoraya ser., 1912, vol. 13, no. 2–3, pp. 49–144 (in Russian).

29.   Quade E.S. Trigonometric approximation in the mean. Duke Math. J., 1937, vol. 3, no. 3, pp. 529–543. doi: 10.1215/S0012-7094-37-00342-9 

Cite this article as: N.A. Il’yasov. Some supplements to S.B.Stechkin’s inequalities in direct and inverse theorems on the approximation of continuous periodic functions, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 155–181.