The Cauchy problem is considered for a homogeneous Hamilton–Jacobi equation with fractional-order coinvariant derivatives, which arises in problems of dynamical optimization of systems described by differential equations with Caputo fractional derivatives. A generalized solution of the problem in the minimax sense is defined. It is proved that such a solution exists, is unique, depends continuously on the parameters of the problem, and is consistent with the classical solution. An infinitesimal criterion of the minimax solution is obtained in the form of a pair of differential inequalities for suitable directional derivatives. An illustrative example is given.
Keywords: Hamilton–Jacobi equations, generalized solutions, coinvariant derivatives, fractional-order derivatives
Received August 17, 2020
Revised October 15, 2020
Accepted October 26, 2020
Funding Agency: This work was supported by RSF (project no. 19-71-00073).
Mikhail Igorevich Gomoyunov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: m.i.gomoyunov@gmail.com
REFERENCES
1. Subbotin A.I. Minimaksnye neravenstva i uravneniya Gamil’tona–Yakobi (Minimax Inequalities and Hamilton–Jacobi Equations). Moscow: Nauka Publ., 1991, 216 p.
2. Subbotin A.I. Generalized solutions of first order PDEs: The dynamical optimization perspective. Basel: Birkhauser, 1995, 314 p. doi: 10.1007/978-1-4612-0847-1 .
3. Lukoyanov N.Yu. Funktsional’nye uravneniya Gamil’tona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei (Functional Hamilton–Jacobi equations and control problems with hereditary information). Ekaterinburg: Ural Federal University Publ., 2011, 243 p.
4. Bayraktar E., Keller C. Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal., 2018, vol. 275, no. 8, pp. 2096–2161. doi: 10.1016/j.jfa.2018.07.010
5. Plaksin A.R. Minimax solution of functional Hamilton–Jacobi equations for neutral type systems. Diff. Equat., 2019, vol. 55, no. 11, pp. 1475–1484. doi: 10.1134/S0012266119110077
6. Gomoyunov M.I. Dynamic programming principle and Hamilton–Jacobi–Bellman equations for fractional-order systems. SIAM J. Control Optim. 2020. Vol. 58, no. 6. P. 3185–3211. doi: 10.1137/19M1279368
7. Gomoyunov M.I. On a Hamilton–Jacobi Equation for Differential Games in Systems with Fractional Caputo Derivatives. In: Proc. Int. Conf. “Stability, Control, Differential Games” (SCDG2019) devoted to the 95th anniversary of Academician N.N. Krasovskii (Ekaterinburg, Russia, 16–20 September 2019). Ekaterinburg: IMM UB RAS, 2019, ISBN: 978-5-8295-0652-0 , pp. 95–99. (in Russian)
8. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications. Yverdon: Gordon and Breach Science Publ., 1993, 976 p. ISBN: 9782881248641 . Original Russian text published in Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya. Minsk: Nauka i tekhnika Publ., 1987, 688 p.
9. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. N Y: Elsevier, 2006, 540 p. ISBN: 0444518320 .
10. Diethelm K. The analysis of fractional differential equations. Berlin: Springer, 2010, 247 p. doi: 10.1007/978-3-642-14574-2
11. Lukoyanov N.Yu., Plaksin A.R. Stable functionals of neutral-type dynamical systems. Proc. Steklov Inst. Math., 2019, vol. 304, pp. 205–218. doi: 10.1134/S0081543819010140
12. Gomoyunov M.I. To the theory of differential inclusions with Caputo fractional derivatives. Diff. Equat., 2020, vol.~56, no.~11, pp.~1387-1401. doi: 10.1134/S0012266120110014
13. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin: Springer, 2014, 443 p. doi: 10.1007/978-3-662-43930-2
14. Kim A.V. Functional differential equations. Application of i-smooth calculus. Dordrecht: Springer, 1999, 165 p. doi: 10.1007/978-94-017-1630-7
15. Zorich V.A. Mathematical analysis. II. Berlin: Springer, 2009, 681 p. ISBN: 978-3-540-87453-9 . Original Russian text published in Zorich V.A. Matematicheskii analiz: Uchebnik. Ch. II. Moscow: Nauka Publ., 1984, 640 p.
16. Gomoyunov M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Frac. Calc. Appl. Anal., 2018, vol. 21, no. 5, pp. 1238–1261. doi: 10.1515/fca-2018-0066
17. Filippov A.F. Differential equations with discontinuous right-hand sides. Mathematics and Its Applications: Soviet Series, vol. 18. Dordrecht etc.: Kluwer Acad. Pub., 1988, 304 p. doi: 10.1007/978-94-015-7793-9 . Original Russian text published in Filippov A.F. Differentsial’nye uravneniya s razryvnoi pravoi chast’yu. Moscow: Nauka Publ., 1985, 225 p.
18. Arutyunov A.V. Lektsii po vypuklomu i mnogoznachnomu analizu (Lectures on convex and set-valued analysis). Moscow: Fizmatlit Publ., 2014, 184 p. ISBN: 978-5-9221-1558-2 .
Cite this article as: M.I. Gomoyunov. Minimax solutions of homogeneous Hamilton–Jacobi equations with fractional-order coinvariant derivative, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 106–125; Proceedings of the Steklov Institute of Mathematics, 2021, Vol. 315, Suppl. 1, pp. S97–S116.