R.R. Akopyan. Analog of the Hadamard theorem and related extremal problems on the class of analytic functions ... P. 32-47

We study several related extremal problems for analytic functions in a finitely connected domain $G$ with rectifiable Jordan boundary $\Gamma$. A sharp inequality is established between values of a function analytic in $G$ and weighted means of its boundary values on two measurable subsets $\gamma_1$ and $\gamma_0=\Gamma\setminus\gamma_1$ of the boundary:
$$ |f(z_0)| \le \mathcal{C}\, \|f\|^{\alpha}_{L^{q}_{\varphi_1}(\gamma_1)}\, \|f\|^{\beta}_{L^{p}_{\varphi_0}(\gamma_0)},\quad z_0\in G, \quad 0<q, p\le\infty.$$
The inequality is an analog of Hadamard's three-circle theorem and the Nevanlinna brothers' theorem on two constants. In the case of a doubly connected domain $G$ and $1\le q,p\le\infty$, we study the cases where the inequality provides the value of the modulus of continuity for a functional of analytic extension of a function from a part of $\gamma_1$ to a given point of the domain. In these cases, the corresponding problems of optimal recovery of a function from its approximate boundary values on $\gamma_1$ and of the best approximation of a functional by linear bounded functionals are solved. The case of a simply connected domain $G$ has been completely investigated previously.

Keywords: analytic functions, optimal recovery of a functional, best approximation of an unbounded functional by bounded functionals, harmonic measure

Received July 13, 2020

Revised October 5, 2020

Accepted October 26, 2020

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University), and as part of research conducted in the Ural Mathematical Center.

Roman Razmikovich Akopyan, Ural Federal University, Yekaterinburg, 620083 Russia; Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: RRAkopyan@mephi.ru

REFERENCES

1.   Akopyan R.R. Best approximation for the analytic continuation operator on the class of analytic functions in a ring. Trudy Inst. Mat. i Mekh. UrO RAN, 2012, vol. 18, no. 4, pp. 3–13 (in Russian).

2.   Akopyan R.R. Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values. Proc. Steklov Inst. Math., 2017, vol. 296, no. 1, pp. 13–18. doi: 10.1134/S008154381702002X 

3.   Akopyan R. R. An analogue of the two-constants theorem and optimal recovery of analytic functions. Sb. Math., 2019, vol. 210, no. 10, pp. 1348–1360. doi: 10.1070/SM8952 

4.   Arestov V.V. Uniform regularization of the problem of calculating the values of an operator. Math. Notes, 1977, vol. 22, no. 2, pp. 618–626. doi: 10.1007/BF01780971 

5.   Arestov V.V. Optimal recovery of operators and related problems. Proc. Steklov Inst. Math., 1990, no. 4, pp. 1–20.

6.   Arestov V.V., Gabushin V.N. Best approximation of unbounded operators by bounded ones. Russian Math. (Iz. VUZ), 1995, vol. 39, no. 11, pp. 38–63.

7.   Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems. Russian Math. Surveys, 1996, vol. 51, no. 6, pp. 1093–1126. doi: 10.1070/RM1996v051n06ABEH003001 

8.   Babenko V.F., Korneichuk N.P., Kofanov V.A. and Pichugov S.A. Neravenstva dlya proizvodnykh i ikh prilozheniya [Inequalities for derivatives and their applications]. Kiev: Naukova dumka, 2003, 590 p. ISBN: 966-00-0074-4 .

9.   Bakhvalov N.S. On the optimality of linear methods for operator approximation in convex classes of functions. U.S.S.R. Comput. Math. Math. Phys., 1971, vol. 11, no. 4, pp. 244–249. doi: 10.1016/0041-5553(71)90017-6 

10.   Gabushin V.N. Best approximations of functionals on certain sets. Math. Notes, 1970, vol. 8, no. 5, pp. 780–785. doi: 10.1007/BF01146932 

11.   Golusin G.M. AuflЈosung einiger ebenen Grundaufaben der mathematischen Physik im Fall der Laplaceschen Gleichung und mehrfachzusammenhangender Gebiete, die durch Kreise begrenzt sind, Mat. Sb., 1934, Vol. 41, no. 2. P. 246–276 (in Russian).

12.   Goluzin G.M. Geometric theory of functions of a complex variable. Ser. Transl. Math. Monogr., vol. 26, Providence, R.I.: American Math. Soc., 1969, 676 p. ISBN: 978-0-8218-1576-2 . Original Russian text published in Goluzin G.M. Geometricheskaya teoriya funktsii kompleksnogo peremennogo: uchebnoe posobie. Moscow; Leningrad: Nauka GITTL Publ., 1952, 628 p.

13.   Lavrent’ev M.M., Romanov V.G., Shishatskii S.P. Ill-posed problems of mathematical physics and analysis, Transl. Math. Monogr., vol. 64, Providence, RI: Amer. Math. Soc., 1986, 290 p.

14.   Magaril-Il’yaev G.G., Osipenko K.Yu. Optimal recovery of functionals based on inaccurate data. Math. Notes, 1991, vol. 50, no. 6, pp. 1274–1279. doi: 10.1007/BF01158269 

15.   Marchuk A.G., Osipenko K.Yu. Best approximation of functions specified with an error at a finite number of points. Math. Notes, 1975, vol. 17, no. 3, pp. 207–212. doi: 10.1007/BF01149008 

16.   Marchuk A.G. Methods optimal in accuracy for the solution of linear recovery problems, preprint no. 10. Novosibirsk: Computing Centre of the Siberian Branch of the USSR Academy of Sciences, 1976, 29 p. (in Russian).

17.   Osipenko K.Yu. On optimal recovery methods in Hardy–Sobolev spaces. Sb. Math., 2001, vol. 192, no. 2, pp. 225–244. doi: 10.1070/SM2001v192n02ABEH000543 

18.   Osipenko K.Yu. The Hardy–Littlewood–Polya inequality for analytic functions in Hardy–Sobolev spaces. Sb. Math., 2006, vol. 197, no. 3, pp. 315–334. doi: 10.1070/SM2006v197n03ABEH003760 

19.   Osipenko K.Yu. Optimal recovery of linear operators in non-Euclidean metrics. Sb. Math., 2014, vol. 205, no. 10, pp. 1442–1472. doi: 10.1070/SM2014v205n10ABEH004425 

20.   Polya G., Szego G. Problems and theorems in analysis. Vol. 1. Berlin: Springer, 1972, 392 p. doi: 10.1007/978-1-4757-1640-5 . Translated to Russian under the title Zadachi i teoremy iz analiza. T. 1. Moscow: Nauka Publ., 1978, 398 p.

21.   Privalov I.I. Granichnye svoistva analiticheskikh funktsii [Boundary properties of analytic functions], 2nd ed. Moscow; Leningrad: GITTL, 1950, 336 p.

22.   Smirnov V. Sur les formules de Cauchy et de Green et quelques problemes qui s’y rattachent. Izv. Akad. Nauk SSSR, VII Ser. Otdel. Mat. Estestv. Nauk, 1932, no. 3, pp. 337–372.

23.   Smolyak S.A. Ob optimal’nom vosstanovlenii funktsii i funktsionalov ot nikh (Optimal recovery of functions and functionals from them). Candidate Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State University Publ., 1965. 152 p.

24.   Stechkin S.B. Inequalities between norms of derivatives of arbitrary functions. Acta Sci. Math., 1965, vol. 26, no. 3-4, pp. 225–230 (in Russian).

25.   Stechkin S.B. Best approximation of linear operators. Math. Notes, 1967, vol. 1, no. 2, pp. 91–99. doi: 10.1007/BF01268056 

26.   Tumarkin G.Ts., Havinson S.Ya. Existence in multiply-connected regions of single-valued analytic functions with a given modulus of boundary values. Izv. Akad. Nauk SSSR Ser. Mat., 1958, vol. 22, no. 4, pp. 543–562 (in Russian).

27.   Tumarkin G.Ts., Khavinson S.Ya. Classes of analytic functions in multiply connected domains. In: Issled. Sovrem. Probl. Teor. Funkcij Kompleks. Peremen, Moscow: Fizmatgiz Publ., 1960, pp. 45–77 (in Russian).

28.   Tumarkin G.Ts., Khavinson S.Ya. Qualitative properties of solving extreme problems of certain types. In: Issled. Sovrem. Probl. Teor. Funkcij Kompleks. Peremen. Moscow: Fizmatgiz Publ., 1960, pp. 77–95 (in Russian).

29.   Khavinson S.Ya. Analytic functions of bounded type. Itogi Nauki. Mat. Anal., 1963, VINITI, Moscow, 1965, pp. 5–80 (in Russian).

30.   Khavinson S.Ya. Representation of extremal functions in the classes $E_q$ in terms of Green’s and Neumann’s functions. Math. Notes, 1974, vol. 16, no. 5, pp. 1018–1023. doi: 10.1007/BF01149790 

31.   Arestov V.V. Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given Fourier transform // Mathematical Optimization Theory and Operations Research (MOTOR 2019), Ser. Lecture Notes in Computer Science, vol. 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Cham: Springer, 2019, pp. 434–448. doi 10.1007/978-3-030-22629-9_30 

32.   Arestov V., Filatova M. Best approximation of the differentiation operator in the space $L_2$ on the semiaxis. J. Approx. Theory, 2014, vol. 187, no. 1, pp. 65–81. doi: 10.1016/j.jat.2014.08.001 

33.   Coifman R., Weiss G. A kernel associated with certain multiply-connected domains and its applications to factorization theorems. Studia Math., 1966, vol. 28, pp. 31–68. doi: 10.4064/sm-28-1-31-68 

34.   Gonzalez-Vera P., Stessin M.I. Joint spectra of Toeplitz operators and optimal recovery of analytic functions. Constr. Approx., 2012, vol. 36, no. 1, pp. 53–82. doi: 10.1007/s00365-012-9169-8 

35.    Garnett J.B., Marshall D. E. Harmonic measure. N Y: Cambridge University Press, 2005. 571 p.

36.   DeGraw A. Optimal recovery of holomorphic functions from inaccurate information about radial integration. Amer. J. Comput. Math., 2012, vol. 2, no. 4, pp. 258–268. doi: 10.4236/ajcm.2012.24035 

37.   Khavinson S.Ya., Kuzina T.S. The Structural formulae for extremal functions in Hardy classes on finite Riemann surfaces. Operator Theory: Advances and Applications, 2005, vol. 158, pp. 37–57. doi: 10.1007/3-7643-7340-7_4 

38.   Khavinson D. Factorization theorems for different classes of analytic functions in multiply connected domains. Pacific J. Math., 1983, vol. 108, no. 2, pp. 295–318. doi: 10.2140/pjm.1983.108.295 

39.   Osipenko K.Yu. Optimal recovery of analytic functions. Huntington: NOVA Science Publ. Inc., 2000, 229 p. ISBN: 1-56072-821-3 .

40.   Osipenko K.Y., Stessin M.I. Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions. Constr. Approx., 2010, vol. 31, pp. 37–67. doi: 10.1007/s00365-009-9043-5 

41.   Robinson R.M. Analytic functions in circular rings. Duke Math. J., 1943, vol. 10, no. 2, pp. 341–354. doi: 10.1215/S0012-7094-43-01031-2 

Cite this article as: R.R. Akopyan. Analog of the Hadamard theorem and related extremal problems on the class of analytic functions, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 4, pp. 32–47.