Lattice-ordered semirings ($drl$-semirings) are considered. Compact sheaves of $drl$-semirings are defined and their characterization is obtained. The properties of compact sheaves are studied; in particular, the structure of irreducible and maximal $l$-ideals in the $drl$-semiring of sections of a compact sheaf is described. A compact sheaf of functional semirings ($f$-semirings) is described in terms of a continuous mapping of the irreducible (and maximal) spectrum of this sheaf onto a compact Hausdorff space. The paper also contains a proof that an $f$-semiring is Gelfand if and only if it is isomorphic to the semiring of all sections of a compact sheaf of $f$-semirings with a unique maximal ideal.
Keywords: lattice-ordered semiring, functional semiring, compact sheaf, Gelfand $f$-semiring
Received April 7, 2020
Revised April 23, 2020
Accepted May 11, 2020
Vasiliy Vladimirovich Chermnykh, Dr. Phys.-Math. Sci., Pitirim Sorokin Syktyvkar State University, Syktyvkar, 167001 Russia, e-mail: vv146@mail.ru
Oksana Vladimirovna Chermnykh, Cand. Sci. (Phis.-Math.), Vyatka State University, Kirov, 610000 Russia, e-mail: usr00458@vyatsu.ru
REFERENCES
1. Rao P.R. Lattice ordered semirings. Math. Sem. Notes, Kobe Univ., 1981, vol. 9, pp. 119–149.
2. Swamy K.L.N. Dually residuated lattice ordered semigroups. Math. Ann., 1965, vol. 159, pp. 105–114. doi: 10.1007/BF01360284
3. Chermnykh O.V. On $drl$-semigroups and $drl$-semirings. Chebyshevskii Sb., 2016, vol. 17, no. 4, pp. 167–179 (in Russian). doi: 10.22405/2226-8383-2016-17-4-167-179
4. Chermnykh V.V., Chermnykh O.V. Functional representations of lattice-ordered semirings. Siberian Electronic Mathematical Reports, 2017, vol. 14, pp. 946–971 (in Russian). doi: 10.17377/semi.2017.14.080
5. Chermnykh O.V. Functional representations of lattice-ordered semirings. II. Siberian Electronic Mathematical Reports, 2018, vol. 15, pp. 677–684 (in Russian). doi: 10.17377/semi.2018.15.053
6. Pierce R.S. Modules over commutative regular rings. Mem. Amer. Math. Soc., 1967, vol. 70, pp. 1–112. doi: 10.1090/memo/0070
7. Koh K. On a representation of strongly harmonic ring by sheaves. Pacif. J. Math., 1972, vol. 41, no. 2, pp. 459–468. doi: 10.2140/pjm.1972.41.459
8. Mulvey C.J. A generalization of Gelfand duality. J. Algebra, 1979, vol. 56, no. 2, pp. 499–505. doi: 10.1016/0021-8693(79)90352-1
9. Filipoiu A. Compact sheaves of lattices and normal lattices. Math. Jap., 1991, vol. 36, no. 2, pp. 381–386.
10. Chermnykh V.V. Representation of positive semirings by sections. Russian Math. Surveys, 1992, vol. 47, no. 5, pp. 180–182. doi: 10.1070/RM1992v047n05ABEH000948
11. Chermnykh V.V. Functional representations of semirings. J. Math. Sci., 2012, vol. 187, no 2, pp. 187–267. doi: 10.1007/s10958-012-1062-2
12. Mulvey C.J. Compact ringed spaces. J. Algebra, 1978, vol. 52, no. 2, pp. 411–436. doi: 10.1016/0021-8693(78)90248-X
13. Simmons H. Compact representations — the lattice theory of compact ringed spaces. J. Algebra, 1989, vol. 126, no. 2, pp. 493–531. doi: 10.1016/0021-8693(89)90315-3
14. Dauns J., Hofmann K.H. The representation of biregular rings by sheaves. Math. Z., 1966, vol. 91, pp. 103–123. doi: 10.1007/BF01110158
15. Davey B.A. Sheaf spaces and sheaves of universal algebras. Math. Z., 1973, vol. 134, no. 4, pp. 275–290. doi: 10.1007/BF01214692
16. Birkhoff G. Lattice Theory. Providence, R.I.: Amer. Math. Soc., 1967, 418 p. ISBN: 0-8218-1025-1 .
17. Miklin A.V., Chermnykh V.V., On $drl$-semirings. Matematicheskiy vestnik pedvuzov i universitetov Volgo–Vyatskogo regiona, 2014, vol. 16, pp. 87–95 (in Russian).
Cite this article as: V.V. Chermnykh, O.V. Chermnykh. Functional representations of lattice-ordered semirings. III, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 235-248.