F. Sun, X. Yi, S.F. Kamornikov. Criterion of subnormality in a finite group: Reduction to elementary binary partitions ... P. 211-218

Wielandt's criterion for the subnormality of a subgroup in a finite group is developed. For a set $\pi =\{p_1,p_2,\ldots,p_n\}$ and a partition $\sigma=\{\{p_1\},\{p_2\},\ldots,\{p_n\},\{\pi\}^{'}\}$, it is proved that a subgroup $H$ is $\sigma$-subnormal in a finite group $G$ if and only if it is $\{\{p_i\},\{p_i\}^{'}\}$-subnormal in $G$ for every $i=1,2,\ldots,n$. In particular, $H$ is subnormal in $G$ if and only if it is $\{\{p\},\{p\}^{'}\}$-subnormal in $\langle H,H^x\rangle$ for every prime $p$ and any element $x\in G$.

Keywords: finite group, subnormal subgroup, $\sigma$-subnormal subgroup, elementary binary partition

Received June 4, 2020

Revised June 30, 2020

Accepted July 3, 2020

Fenfen Sun, Zhejiang Sci-Tech University, Hangzhou, P. R. China, e-mail: sun4624@163.com

Xiaolan Yi, Zhejiang Sci-Tech University, Hangzhou, P. R. China, e-mail: yixiaolan2005@126.com

Sergei Fedorovich Kamornikov, Dr. Phys.-Math. Sci., Prof., Francisk Skorina Gomel State University, 246019, Gomel, Republic of Belarus. e-mail: sfkamornikov@mail.ru

REFERENCES

1.   Wielandt H. Criterion of subnormality in finite groups. Math. Z., 1974, vol. 138, pp. 199–203 (in German). doi: 10.1007/BF01237117 

2.   Skiba A.N. On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups. J. Algebra, 2015, vol. 436, pp. 1–16. doi: 10.1016/j.jalgebra.2015.04.010 

3.   Kleidman P.B. A proof of the Kegel-Wielandt conjecture on subnormal subgroups. Ann. Math., 1991, vol. 133, no. 2, pp. 369–428. doi: 10.2307/2944342 

4.   Kegel O.H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math Z., 1962, vol. 78, no. 1, pp. 205–221. doi: 10.1007/BF01195169 

5.   Wielandt H. Zusammengesetzte Gruppen: Holders Programm heute. Proc. Sympos. Pure Math., 1980, vol. 37, pp. 161–173. doi: 10.1090/pspum/037/604575 

6.   Kamornikov S.F. Permutability of subgroups and $\mathfrak{F}$-subnormality. Sib. Math. J., 1996, vol. 37, no. 5, pp. 936–949. doi: 10.1007/BF02110725 

7.   Lennox J.C., Stonehewer S.E. Subnormal subgroups of groups. Oxford: Clarendon Press, 1987, 270 p. ISBN: 9780198535522 .

8.   Ballester-Bolinches A., Ezquerro L.M. Classes of finite groups. N Y: Springer, 2006, 385 p. doi: 10.1007/1-4020-4719-3 

9.   Kamornikov S.F., Sel’kin M.V. Podgruppovye funktory i klassy konechnykh grupp [Subgroup functors and classes of finite groups]. Minsk: Belarusskaya Nauka Publ., 2003. 256 p.

10.   Wielandt H.  Uber den Normalisator der subnormalen Untergruppen. Math. Z., 1958, vol. 69, no. 8, pp. 463–465. doi: 10.1007/BF01187422 

11.   Baer R. Engelsche Elemente Noetherscher Gruppen. Math. Ann., 1957, vol. 133, no. 3, pp. 256–270. doi: 10.1007/BF02547953 

12.   Guest S., Levy D. Criteria for solvable radical membership via p-elements. J. Algebra, 2014, vol. 415, pp. 88–111. doi: 10.1016/j.jalgebra.2014.06.003 

Cite this article as: F. Sun, X. Yi, S.F. Kamornikov. Criterion of subnormality in a finite group: Reduction to elementary binary partitions, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 211–218; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2021, Vol. 313, Suppl. 1, pp. S194–S200.