V.V. Sidorov. Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$  and lattices of its subalgebras ... P. 171-186

A commutative semiring with zero and unity different from a ring where each nonzero element is invertible is called a semifield with zero. Let $\mathbb{R}^{\vee}_+$ be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication. For any positive real numbers $a$ and $s$, denote by $\psi_{a,s}$ the automorphism of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ defined by the rule $\psi_{a, s}\colon a_0\vee a_1x\vee\ldots\vee a_nx^n\mapsto a_0^s\vee a_1^s(ax)\vee\ldots\vee a_n^s(ax)^n$. It is proved that the automorphisms of the semiring $\mathbb{R}_+^{\vee}[x]$ are exactly the automorphisms $\psi_{a, s}$. The ring $C(X)$ of continuous $\mathbb{R}$-valued functions defined on an arbitrary topological space $X$ is an algebra over the field $\mathbb{R}$ of real numbers. A subalgebra of $C(X)$ is any nonempty subset closed under addition and multiplication of functions and under multiplication by constants from $\mathbb{R}$. Similarly, we call a nonempty subset $A\subseteq \mathbb{R}_+^{\vee}[x]$ a subalgebra of $\mathbb{R}_+^{\vee}[x]$ if $f\vee g,fg,rf\in A$ for any $f, g\in A$ and $r\in\mathbb{R}^{\vee}_+$. It is proved that an arbitrary automorphism of the lattice of subalgebras of $\mathbb{R}_+^{\vee}[x]$ is induced by some automorphism of $\mathbb{R}_+^{\vee}[x]$. The same result also holds for the lattice of subalgebras with unity of the semiring $\mathbb{R}_+^{\vee}[x]$. The technique of one-generated subalgebras is applied.

Keywords: semiring of polynomials, lattice of subalgebras, automorphism, max-addition

Received May 2, 2020

Revised May 20, 2020

Accepted June 1, 2020

Vadim Veniaminovich Sidorov, Cand. Sci. (Phys.-Math.), Vyatka State University, Kirov, 610000 Russia, e-mail: sedoy_vadim@mail.ru

REFERENCES

1.   Gelfand I.M., Kolmogorov A.N. On rings of continuous functions on topological spaces. Dokl. Akad. Nauk SSSR, 1939, vol. 22, no. 1, pp. 11–15.

2.   Hewitt E. Rings of real-valued continuous functions. I. Trans. Amer. Math. Soc., 1948, vol. 64, no. 1, pp. 45–99. doi: 10.1090/S0002-9947-1948-0026239-9 

3.   Vechtomov E.M. Lattice of subalgebras of the ring of continuous functions and Hewitt spaces. Math. Notes, 1997, vol. 62, pp. 575–580. doi: 10.1007/BF02361295 

4.   Sidorov V.V. Determinability of semirings of continuous nonnegative functions with max-plus by the lattices of their subalgebras. Lobachevskii J. Math., 2019, vol. 40, pp. 90–100. doi: 10.1134/S1995080219010128 

5.   Sidorov V.V. Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable. J. Math. Sci., 2012, vol. 187, no. 2, pp. 169–176. doi: 10.1007/s10958-012-1060-4 

Cite this article as: V.V. Sidorov. Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 171–186.