A.R. Mirotin. On connections between the Bochner–Phillips and Hille–Phillips functional calculi ... P. 118-132

The classical Hille–Phillips functional calculus of generators of $C_0$-semigroups, presented in the well-known monograph of these authors, uses Laplace transforms of measures as symbols and leads to bounded operators. Another important functional calculus of semigroup generators — the Bochner–Phillips calculus — uses Bernstein functions as symbols. In this work, an extension of the Hille–Phillips functional calculus is considered that leads to unbounded operators. Connections of this calculus with the Bochner–Phillips functional calculus are indicated. In particular, for generators of uniformly stable semigroups, the multiplication rule and the composition theorem are proved for functions understood in different senses. Conditions for the invertibility of operators that arise in the Bochner–Phillips calculus are obtained. Several examples are given and unsolved problems are formulated.

Keywords: Hille–Phillips functional calculus, Bochner–Phillips functional calculus, fractional powers of operators, subordinate semigroup

Received May 30, 2020

Revised June 23, 2020

Accepted July 20, 2020

Adolf Ruvimovich Mirotin, Dr. Phys.-Math. Sci., Prof., Francisk Skorina Gomel State University, Gomel, 246019 Belarus, e-mail: amirotin@yandex.ru

REFERENCES

1.   Hille E., Phillips R.S. Functional analysis and semi-groups. Colloquium Publications, vol. 31, Providence: American Mathematical Society, 1957, 808 p. ISBN: 0821874640 . Translated to Russian under the title Funktsional’nyi analiz i polugruppy. Moscow: Inostr. Lit. Publ., 1962, 829 p.

2.   Baeumer B., Haase M., Kovacs M. Unbounded functional calculus for bounded groups with applications. J. Evol. Equ., 2009, vol. 9, no. 1, pp. 171–195. doi: 10.1007/s00028-009-0012-z 

3.   Martinez-Carracedo C., Santz-Alix M. The theory of fractional powers of operators. Amsterdam: North Holland, 2001, 378 p. doi: 10.1016/s0304-0208(00)x8025-5 

4.   Korkina L.F., Rekant M.A. Properties of mappings of scalar functions to operator functions of a linear closed operator. Trudy Inst. Mat. i Mekh. UrO RAN, 2015, vol. 21, no. 1, pp. 153–165 (in Russian).

5.   Korkina L.F., Rekant M.A. Some classes of functions of a linear closed operator. Proc. Steklov Inst. Math. (Suppl.), 2012, vol. 277, suppl. 1, pp. 121–135. doi: 10.1134/S0081543812050124 

6.   Mirotin A.R. A functional calculus of closed operators on Banach space. III. Certain topics of perturbation theory. Russ Math., 2017, vol. 61, no. 12, pp. 19–28. doi: 10.3103/S1066369X17120039 

7.   Batty C.J.K., Gomilko A., Tomilov Yu. Product formulas in functional calculi for sectorial operators. Math. Z., 2015, vol. 279, no. 1, pp. 479–507. doi: 10.1007/s00209-014-1378-3 

8.   Batty C.J.K., Gomilko A., Tomilov Yu. Resolvent representations for functions of sectorial operators. Advances in Mathematics, 2017, vol. 308, pp. 896–940. doi: 10.1016/j.aim.2016.12.009 

9.   Mirotin A.R. On the $\mathcal{T}$-calculus of generators for $C_0$-semigroups. Sib. Math. J., 1998, vol. 39, no. 3, pp. 493–503. doi: 10.1007/BF02673905 

10.   Shilling R.L., Song R., Vondrachek Z. Bernstein Functions. Theory and Applications. 2nd ed. Berlin; Boston: de Gruyter, 2012, 425 p. doi: 10.1515/9783110269338 

11.   Gomilko A., Tomilov Yu. On subordination of holomorphic semigroups. Advances in Mathematics, 2015, vol. 283, pp. 155–194. doi: 10.1016/j.aim.2015.05.016 

12.   Lopushansky O.V., Sharyn S.V. Generalized Hille–Phillips type functional calculus for multiparameter semigroups. Siberian Math. J., 2014, vol. 55, no. 1, pp. 105–117. doi: 10.1134/S0037446614010133 

13.   Mirotin A.R. On the connections of Hille–Phillips functional calculus with Bochner–Phillips functional calculus [e-resource], 2019, 14 p. Available at https://arxiv.org/pdf/1912.12423.pdf (in Russian).

14.   Kato T. Perturbation theory for linear operators. Berlin: Springer-Verlag, 1995, 619 p. doi: 10.1007/978-3-642-66282-9 . Translated to Russian under the title Teoriya vozmushchenii lineinykh operatorov. Moscow: Mir, 1972, 740 p.

15.   Mirotin A.R. The multidimensional $\mathcal{T}$-calculus of generators of $C_0$-semigroups. St. Petersburg Math. J., 2000, vol. 11, no. 2, pp. 315–335.

16.   Widder D.V. The Laplace transform. Princeton: Princeton University Press, 1946, 412 p.

17.   Mirotin A.R. A Joint spectral mapping theorem for sets of semigroup generators. Funct. Anal. Appl., 2012, vol. 46, no. 3, pp. 210–217. doi: 10.4213/faa3076 

18.   Nollau V.  Uber den Logarithmus abgeschlossener Operatoren in Banachschen Raumen. Acta Sci. Math., 1969, vol. 30, no. 3-4, pp. 161–174.

19.   Bateman H., Erdelyi A. Tables of integral transforms. Vol. 1. N Y: McGraw-Hill, 1954, 391 p. ISBN: 0070195498 . Translated to Russian under the title Tablitsy integral’nykh preobrazovanii. T. 1. Preobrazovaniya Fur’e, Laplasa, Mellina, Moscow: Nauka Publ., 1969, 344 p.

20.  Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series. Vol. 1. Elementary functions. N Y etc.: Gordon and Breach, 1988, 798 p. ISBN: 9782881240898 . Original Russian text published in Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady, Moscow: Nauka Publ., 1981, 800 p.

21.   Brychkov Yu.A., Prudnikov A.P. Integral transforms of generalized functions. N Y; London: Gordon & Breach, 1989, 342 p. ISBN: 2-88124-705-9 . Original Russian text published in Brychkov Yu.A., Prudnikov A.P. Integral’nye preobrazovaniya obobshchennykh funktsii, Moscow: Nauka Publ., 1977, 288 p.

Cite this article as: A.R. Mirotin. On connections between the Bochner–Phillips and Hille–Phillips functional calculi, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 118–132.