A.-R.K. Ramazanov, A.K. Ramazanov, V.G. Magomedova. On the Gibbs phenomenon for rational spline functions ... P. 238-251

In the case of functions $f(x)$ continuous on a given closed interval $[a,b]$ except for jump discontinuity points, the Gibbs phenomenon is studied for rational spline functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta, g)$ defined for a knot grid $\Delta: a=x_0<x_1<\dots<x_N=b$ and a family of poles $g_i\not \in [x_{i-1},x_{i+1}]$ $(i=1,2,\dots,N-1)$ by the equalities $R_{N,1}(x)= [R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x)]/(x_i-x_{i-1})$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots,N)$. Here the rational functions $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ $(i=1,2,\dots,N-1)$ are uniquely defined by the conditions $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$; we assume that $R_0(x)\equiv R_1(x)$, $R_N(x)\equiv R_{N-1}(x)$. Conditions on the knot grid~$\Delta$ are found under which the Gibbs phenomenon occurs or does not occur in a neighborhood of a discontinuity point.

Keywords: interpolation spline, rational spline, Gibbs phenomenon

Received December 10, 2019

Revised  May  18, 2020

Accepted  May 25, 2020

A.-R.K. Ramazanov, Dr.Phys.-Math., Prof., Dagestan State University, the Republic of Dagestan, Makhachkala, 367002 Russia; Dagestan Scientific Center RAN, the Republic of Dagestan, Makhachkala, 367025 Russia, e-mail: ar ramazanov@rambler.ru

A.K. Ramazanov, Cand. Sci. (Phys.-Math.), Bauman Moscow State Technical University (Kaluga Branch), Kaluga, 248000, Russia, e-mail: akramazanov@mail.ru

V.G. Magomedova, Cand. Sci. (Phys.-Math.), Dagestan State University, the Republic of Dagestan, Makhachkala, 367002 Russia, e-mail: vazipat@rambler.ru

REFERENCES

1. M. Hazewinkel (ed.) Encyclopaedia of Mathematics, vol. 1. Dordrecht: D. Reidel, 1987, 488 p. doi: 10.1017/s0016756800022986 . Original Russian text published in Matematicheskaya entsiklopediya, T. 1. Moscow: Sovetskaya Entsiklopediya, 1977.

2. Bary N.K. A treatise on trigonometric series, vol. I,II. Oxford; New York: Pergamon Press, 1964, 553 p., 508 p. doi: 10.1002/zamm.19650450531 . Original Russian text published in Bari N.K. Trigonometricheskie ryady. Moscow: GIMFL Publ., 1961, 937 p.

3. Jerri A.J. The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations. Ser. Math. Appl.; vol. 446. Boston: Springer, 1998. 340 p. doi: 10.1007/978-1-4757-2847-7 

4. Golubov B.I. On Gibbs phenomenon for Riesz spherical means of multiple Fourier integrals and Fourier series. Analysis Mathematica, 1978, vol. 4, no. 4, pp. 269–287. doi: 10.1007/BF02020575 

5. Olevska Yu.B., Olevskyi V.I., Shapka I.V., Naumenko T.S. Application of two-dimensional Pade-type approximants for reducing the Gibbs phenomenon. AIP Conf. Proc., 2019, vol. 2164, no. 1, art.- no. 060014. doi: 10.1063/1.5130816 

6. Mohammad M. On the Gibbs effect based on the quasi-affine dual tight framelets system generated using the mixed oblique extension principle. Mathematics, 2019, vol. 7, no. 10, art.-no. 952, 14 p. doi: 10.3390/math7100952 

7. Lin S., Xu Y., Chen Y., Chang C., Chen Y.E., Chen J. Gibbs-phenomenon-reduced digital PWM for power amplifiers using pulse modulation. IEEE Access, 2019, vol. 7, pp. 178788–178797. doi: 10.1109/ACCESS.2019.2958866 

8. Subbotin Yu.N. Variations on a spline theme. Fundam. Prikl. Mat., 1997, vol. 3, no. 4, pp. 1043–1058 (in Russian).

9. Zav’yalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splain-funktsii (Methods of spline-functions). Moscow: Nauka Publ., 1980, 352 p.

10. Andreev A.S. On interpolation by cubic splines of a function possessing discontinuities. C.R. Acad. Bulg. sci., 1974, vol. 27, pp. 881–884.

11. Richards F.B. A Gibbs phenomenon for spline functions. J. Approximation Theory. 1991, vol. 66, pp. 344–351. doi: 10.1016/0021-9045(91)90034-8 

12. Zhimin Zhang, Clyde F. Martin. Convergence and Gibbs phenomenon in cubic spline interpolation of discontinuous functions. J. Computational and Applied Math., 1997, vol. 87, pp. 359–371. doi: 10.1016/s0377-0427(97)00199-4 

13. Kvasov B.I., Kobkov V.V. Some properties of cubic Hermitian splines with additional nodes. Dokl. Akad. Nauk SSSR, 1974, vol. 217, no. 5, pp. 1007–1010 (in Russian).

14. Ramazanov A.-R.K., Magomedova V.G. Unconditionally convergent rational interpolation splines. Math. Notes, 2018, vol. 103, no. 3-4, pp. 635–644. doi: 10.1134/S0001434618030318 

15. Ramazanov A.-R.K., Magomedova V.G. Splines for three-point rational interpolants with autonomous poles. Dagestan. Elektron. Mat. Izv., 2017, no. 7, pp. 16–28 (in Russian). doi: 10.31029/demr.7.2 

 Cite this article asA.-R.K. Ramazanov, A.K. Ramazanov, V.G. Magomedova. On the Gibbs phenomenon for rational spline functions. Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 2, pp. 238-251.