A.V. Parshikov. Optimal control of a low-altitude flight in the terrain-following mode ... P. 225-237

In a terrain-following flight, it is important to minimize the deviation of the aircraft altitude from a given height function. The paper describes a class of optimal controls for the pure terrain-following problem. We consider a model of a controlled flight in a vertical plane, where the control is the elevator angle. The functions of the aerodynamic moments and forces are linear in the control and continuous in all phase variables. The aircraft is regarded as a rigid body. Based on these assumptions, it is proved that an optimal control is a function taking two extreme values. The specified class of controls is used in numerical experiments. In calculations we use a model of flight at subsonic speeds in dense layers of the atmosphere. Using a specific aircraft model as an example, we compare the efficiency of two control algorithms described by a piecewise constant function and a continuous function.

Keywords: terrain-following problem, pure terrain-following problem, flight in a vertical plane, optimal control of an aircraft

Received March 2, 2020

Revised May 5, 2020

Accepted May 18, 2020

Andrey Victorovich Parshikov, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: a.v.parshikov@imm.uran.ru 

REFERENCES

1. Lu Ping, Pierson Bion. Optimal aircraft terrain-following analysis and trajectory generation. J. of Guidance, Control, and Dynamics, 1995, vol. 18, pp. 555-560, doi: 10.2514/3.21422 

2. Williams Paul. Real-time computation of optimal three-dimensional aircraft trajectories including terrain-following. AIAA Guidance, Navigation, and Control Conference and Exhibit (21-24 August 2006, Keystone, Colorado), no. AIAA-2006-6603 . doi: 10.2514/6.2006-6603 

3. Russian Standard GOST 4401-81. Atmosfera standartnaya. Parametry [Standard atmosphere. Parameters]. Moscow: IPK Izdatel’stvo standartov, 2004, 180 p.

4. Stevens B.L., Lewis F.L., Johnson E.N. Aircraft control and simulation: Dynamics, controls design, and autonomous systems. 3rd ed. N Y: Wiley-Blackwell, 2015, 768 p. doi: 10.1002/9781119174882 

5. Gorbatenko S.А., Makashov E.М., Polushkin Yu.F., Sheftel L.V. Mekhanika poleta [Flight mechanics]. Мoscow: Mashinostroenie Publ., 1969, 420 p.

6. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishechenko E.F. The Mathematical theory of optimal processes. N Y; London: John Wiley & Sons, 1962, 515 p. doi: 10.1002/zamm.19630431023 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov. Moscow: Nauka Publ., 1983, 392 p.

7. Ioffe A.D., Tihomirov V.M. Theory of extremal problems. Ser. Studies in Math. and its Appl., vol. 6. Amsterdam; N Y; Oxford: North-Holland Publishing Company, 1979, 460 p. ISBN: 0444851674 . Original Russian text published in Ioffe A.D., Tikhomirov V.M. Teoriya ekstremal’nykh zadach. Moscow: Nauka Publ., 1974, 480 p.

8. Bryson A. E. Jr., Ho Yu-Chi. Applied optimal control. Waltham, Mass.: Blaisdell Publ. Comp., 1969, 496 p. Translated to Russian under the title Prikladnaya teoriya optimal’nogo upravleniya. Moscow: Mir Publ., 1972, 544 p.

Cite this article as: A.V. Parshikov. Optimal control of a low-altitude flight in the terrain-following mode. Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 2, pp. 225-237 .