The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set:
$$\left\{ \begin{array}{ll} \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, & x\in \mathbb{R}^{n},\,y\in \mathbb{R}^{m},\,u\in\mathbb{R}^{r},\\[1ex]
\varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u,& \|u\|\le 1,\\[1ex] x(0)=x_0\not=0,\quad y(0)=y_0, & 0<\varepsilon\ll 1,\\[1ex]
x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min. \end{array} \right. $$
The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved. The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained. An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers of the small parameter $\varepsilon$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter
Received January 15, 2020
Revised February 27, 2020
Accepted March 2, 2020
Funding Agency: O.O. Kovrizhnykh’s research is supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Aleksei Rufimovich Danilin, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: dar@imm.uran.ru
Ol’ga Olegovna Kovrizhnykh, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620083 Russia, e-mail: koo@imm.uran.ru
REFERENCES
1. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes, ed. L.W. Neustadt, N Y; London, Interscience Publ. John Wiley & Sons, Inc., 1962, 360 p. ISBN: 0470693819 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov, Moscow: Fizmatgiz Publ., 1961, 391 p.
2. Dmitriev M.G., Kurina G.A. Singular perturbations in control problems. Automation and Remote Control, 2006, vol. 67, no. 1, pp. 1–43. doi: 10.1134/S0005117906010012
3. Zhang Y., Naidu D.S., Chenxiao Cai and Yun Zou Singular perturbations and time scales in control theories and applications: an overview 2002-2012. Inter. J. Informaton and Systems Sciences, 2014, vol. 9, no. 1, pp. 1–36.
4. Kokotovic P.V., Haddad A.H. Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Automat. Control., 1975, vol. 20, no. 1, pp. 111–113. doi: 10.1109/TAC.1975.1100852
5. Dontchev A.L. Perturbations, approximations and sensitivity analisis of optimal control systems. Berlin; Heidelberg; N Y; Tokio, Springer-Verlag, 1983, 161 p. doi: 10.1007/BFb0043612. Translated under the title Sistemy optimal’nogo upravleniya: Vozmushcheniya, priblizheniya i analiz chuvstvitel’nosti, Moscow, Mir Publ., 1987, 156 p.
6. Donchev A.L., Veliev V.M. Singular Perturbation in Mayer’s Problem for Linear Systems. SIAM J. Control Optim. 1983. vol. 21, no. 4, pp. 566–581. doi: 10.1137/0321034
7. Kurina G.A., Nguyen T.H. Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients. Computational Mathematics and Mathematical Physics, 2012, vol. 52, no. 4, pp. 524-547. doi: 10.1134/S0965542512040100
8. Kurina G.А., Hoai N.T. Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-Quadratic control problem in a critical case. AIP Conference Proceedings, 2018, vol. 1997, pp. 020073. doi: 10.1063/1.5049067
9. Danilin A.R., Il’in A.M. On the structure of the solution of a perturbed optimal-time control problem. Fundament. Prikl. Matematika, 1998, vol. 4, no. 3, pp. 905–926 (in Russian).
10. Danilin A.R., Kovrizhnykh O.O. Time-optimal control of a small mass point without environmental resistance. Dokl. Math., 2013, vol. 88, no. 1, pp. 465–467. doi:10.1134/S1064562413040364
11. Danilin A.R., Parysheva Y.V. Asymptotics of the optimal cost functional in a linear optimal control problem. Dokl. Math., 2009, vol. 80, no. 1, pp. 478–481. doi:10.1134/S1064562409040073
12. Shaburov A.A. Asymptotic expansion of a solution for the singularly perturbed optimal control problem with a convex integral quality index and smooth control constraints. Proc. of the Institute of Math. and Inf. at Udmurt State University, 2017, vol. 50, no 2, pp. 110–120.
13. Danilin A.R., Kovrizhnykh O.O. On the dependence of the time-optimal control problem for a linear system of two small parameters. Vest. Chelyabinsk. Univ., Ser. Matematika, Mekhanika, Informatika, iss. 14, 2011, pp. 46–60 (in Russian).
14. Shaburov A.A. Asymptotic expansion of the solution to a singularly perturbed optimal control problem with an integral convex quality criterion and smooth geometric control constraints. Vestn. of Tambov. Univ. Ser: Natural and Technical Sciences. 2019, vol. 24, no. 125, pp. 119–136 (in Russian). doi: 10.20310/1810-0198-2019-24-125-119-136
15. Shaburov A.A. Asymptotic expansion of the solution to singularly perturbed optimal control problems with smooth geometric control constraints and an integral convex quality index. The dissertation for the degree of candidate of physical and mathematical sciences. Yekaterinburg, 2019. 132 p.
16. Lee E.B., Markus L. Foundations of optimal control theory. N Y; London; Sydney: John Wiley & Sons, Inc., 1967, 576 p. Translated under the title Osnovy teorii optimal’nogo upravleniya, Moscow, Nauka Publ., 1972, 576 p. ISBN: 0471522635 .
17. Vassilyeva A.B., Butuzov V.F. Asymptoticheckie razlozhenya reshenyi singul’arno vozmutshennykh uravnenyi [Asymptotic expansions of solutions of singularly perturbed equations]. Moscow: Nauka Publ., 1973, 272 p.
18. Kantorovich L.V., Akilov G.P. Functional analysis. 2nd ed. N Y: Pergamon Press Ltd, 1982, 589 p. ISBN: 0-08-023036-9 . Original Russian text (3rd ed.) published in Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz. Moscow: Nauka Publ., 1984, 752 p.
Cite this article as: A.R. Danilin, O.O. Kovrizhnykh. Asymptotics of a solution to a singularly perturbed time-optimal control problem of transferring an object to a set. Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 2, pp. 132–146; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2020, Vol. 313, Suppl. 1, pp. S40–S53.