A.R. Alimov. Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces ... P. 28-46

A continuous curve $k(\,{\cdot}\,)$ in a normed linear space $X$ is called monotone if the function $f(k(\tau))$ is monotone with respect to $\tau$ for any extreme functional$f$ of the unit dual sphere $S^*$. A closed set is monotone path-connected if any two points from it can be connected by a continuous monotone curve lying in this set. We prove that in a three-dimensional Banach space any closed set with lower semi-continuous metric projection is monotone path-connected if and only if the norm of the space is either cylindrical or smooth. This result partially extends a recent result of the author of this paper and B.B. Bednov, who characterized the three-dimensional spaces in which any Chebyshev set is monotone path-connected. We show that in a finite-dimensional Banach space any closed set with lower semi-continuous (continuous) metric projection is convex if and only if the space is smooth. A number of new properties of strict suns in three-dimensional spaces with cylindrical norm is put forward. It is shown that in a three-dimensional space with cylindrical norm a closed set $M$ with lower semi-continuous metric projection is a strict sun. Moreover, such a set $M$ has contractible intersections with closed balls and possesses a continuous selection of the metric projection operator. Our analysis depends substantially on the novel machinery of approximation of the unit sphere by polytopes built from tangent directions to the unit sphere.

Keywords: set with continuous metric projection, Chebyshev set, sun, monotone path-connected set

Received December 19, 2019

Revised January 28, 2020

Accepted February 10, 2020

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project nos. 18-01-00333-а, 19-01-00332-a) and a grant from the President of the Russian Federation for Supporting Leading Scientific Schools (project no. NSh-6222.2018.1).

Alexey R. Alimov, Dr. Phys.-Math. Sci., Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119899 Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia, e-mail: alexey.alimov-msu@yandex.ru

REFERENCES

1.   Alimov A.R., Tsar’kov I.G. Connectedness and solarity in problems of best and near-best approximation. Russian Math. Surveys, 2016, vol. 71, no. 1, pp. 1–77. doi: 10.1070/RM9698 

2.   Alimov A.R., Shchepin E.V. Convexity of suns in tangent directions. J. Convex Anal., 2019, vol. 26, no. 4, pp. 1069–1074. doi: 10.1134/S1064562419010058 

3.  Alimov A.R., Shchepin E.V. Convexity of Chebyshev sets with respect to tangent directions. Russian Math. Surveys, 2018, vol. 73, no. 2, pp. 366–368. doi: 10.1070/RM9813 

4.   Alimov A.R. Continuity of the Metric Projection and Local Solar Properties of Sets. Set-Valued Var. Anal., 2019, vol. 27, no. 1, pp. 213–222. doi: 10.1007/s11228-017-0449-0 

5.  Alimov A.R. Selections of the metric projection operator and strict solarity of sets with continuous metric projection. Sb. Math., 2017, vol. 208, no. 7, pp. 915–928. doi: 10.1070/SM8765 

6.  Alimov A.R. Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces. Izv. Math., 2014, vol. 78, no. 4, pp. 641–655. doi: 10.1070/IM2014v078n04ABEH002702 

7.   Alimov A.R. Preservation of approximative properties of subsets of Chebyshev sets and suns in $\ell^\infty (n)$ Izv. Math., 2006, vol. 70, no. 5, pp. 857–866. doi: 10.1070/IM2006v070n05ABEH002330 

8.   Alimov A.R. Monotone path connectedness of sets with continuous metric projection. In Proc. Int. Sci. Conf. “Modern problems in natural and human sciences and their role in strengthening of relations between countries” dedicated to the 10th anniversary of Dushanbe Branch of Moscow State University”. 2019. P. 9–10.

9.   Berdyshev V.I. On the problem of Chebyshev sets. Akad. Nauk Azerb. SSR Dokl., 1966, vol. 22, no, 9, pp. 3–5.

10.   Blatter J., Morris P.D., Wulbert D.E. Continuity of the set-valued metric projection. Math. Ann., 1968, vol. 178, no. 1, pp. 12–24. doi: 10.1007/BF01350621 

11.   Brondsted A. Convex sets and Chebyshev sets, II. Math. Scand., 1966, vol. 18, pp. 5–15. doi: 10.7146/math.scand.a-10773 

12.   Brown A.L. Chebyshev sets and facial systems of convex sets in finite-dimensional spaces. Proc. Lond. Math. Soc., 1980, vol. s3-41, no. 2, pp. 297–339. doi: 10.1112/plms/s3-41.2.297 

13.   Brown A.L. Suns in normed linear spaces which are finite dimensional. Math. Ann., 1987, vol. 279, no. 1, pp. 87–101. doi: 10.1007/BF01456192 

14.   Brown A.L. On the connectedness properties of suns in finite dimensional spaces. In: Fitzpatrick S.P., Giles J.R. (eds.) Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988). Proc. Centre Math. Anal. Austral. Nat. Univ., Canberra: Austral. Nat. Univ., 1988, vol. 20, pp. 1–15.

15.   Brown A.L. On the problem of characterising suns in finite dimensional spaces. Rend. Circ. Mat. Palermo (2) Suppl., 2002, vol. 68, pp. 315–328.

16.   Brown A.L. Suns in polyhedral spaces. In: Girela D. et al (eds.), Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, Seville: Univ. Sevilla Secr. Publ., 2003, vol. 64, pp. 139–146.

17.   Li T., Wang J., Wen H. Global structure and regularity of solutions to the Eikonal equation. Arch. Rational Mech. Anal., 2019, vol. 232, no. 2, pp. 1073–1112. doi: 10.1007/s00205-018-01339-4 

18.   Nevesenko N.V. Strict sums and semicontinuity below metric projections in linear normed spaces. Math. Notes, 1978, vol. 23, no. 4, pp. 308–312. doi: 10.1007/BF01786961 

19.   Nevesenko N.V., Oshman E.V. Metric projection onto convex sets. Math. Notes, 1982, vol. 31, no. 1, pp. 59–64. doi: 10.1007/BF01146270 

20.   Phelps R.R. A representation theorem for bounded convex sets. Proc. Amer. Math. Soc., 1960, vol. 11, pp. 976–983. doi: 10.2307/2034446 

21.   Tsar’kov I.G. Bounded Chebyshev sets in finite-dimensional Banach spaces. Math. Notes of the Academy of Sciences of the USSR., 1984, vol. 36, no. 1, pp. 530–537. doi: 10.1007/BF01139554 

22.   Tsar’kov I.G. Continuity of the metric projection, structural and approximate properties of sets. Math. Notes of the Academy of Sciences of the USSR., 1990, vol. 47, no. 2, pp. 218–227.
doi: 10.1007/BF01156834 

23.   Tsar’kov I.G. Singular sets of surfaces. Russ. J. Math. Phys., 2017, vol. 24, no. 2, pp. 263–271. doi: 10.1134/S1061920817020121 

24.   Tsar’kov I.G. Continuous selections for metric projection operators and for their generalizations. Izv. Math., 2018, vol. 82, no. 4, pp. 837–859. doi: 10.1070/IM8695 

25.   Tsar’kov I.G. Weakly monotone sets and continuous selection from a near-best approximation operator. Proc. Steklov Inst. Math., 2018, vol. 303, pp. 227–238. doi: 10.1134/S0081543818080187 

26.   Tsar’kov I.G. Weakly monotone sets and continuous selection in asymmetric spaces. Sb. Math., 2019, vol. 210, no. 9, pp. 1326–1347. doi: 10.1070/SM9107 

27.   Tsar’kov I.G. Smooth solutions of the eikonal equation and the behaviour of local minima of the distance function. Izv. Math., 2019, vol. 83, no. 6, pp. 1234–1258. doi: 10.4213/im8850 

Cite this article as: A.R.Alimov. Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces. Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 2, pp. 28–46.