A.A. Shananin. Analysis of the financial state of an investor based on the Cantor–Lippman model ... P. 293-306

The problem of restoring the economic growth and overcoming the stagnation of the Russian economy is associated with escaping the institutional traps. One of these traps is the big difference between interest rates on loans and deposits, which expresses the imperfection of the capital market and prevents an objective assessment of investment projects. In these conditions, the assessment of an investment project becomes dependent on the business environment in which the project is implemented. We propose to use the Cantor–Lippman model of investment at an imperfect capital market to describe the entrepreneurial (investment) environment. In the Cantor–Lippman model, the investment environment is described by a pool of stationary, replicable investment projects. Deflators are built and used to evaluate new investment projects and the financial state of the investor. The asymptotic properties of the deflators and, with their help, the problems of economic growth in Russia are discussed.

Keywords: investments, Cantor–Lippman model, mathematical modeling of economics, NPV, IRR, dual problem, investment polynomial, linear programming

Received October 16, 2019

Revised January 20, 2020

Accepted January 27, 2020

Funding Agency: This work was supported by the Russian Science Foundation (project no. 16-11-10246).

Aleksandr Alekseevich Shananin, Dr. Phys.-Math. Sci, RAS Corresponding Member, Prof., Moscow Institute of Physics and Technology (National Research University), Moscow, 141701 Russia; Federal Research Center “Computer Science and Control” of Russian Academy of Science, Moscow, 119333 Russia; Lomonosov Moscow State University, Moscow, 119991 Russia; Peoples’ Friendship University of Russia, Moscow, 117198 Russia, e-mail: alexshan@yandex.ru

REFERENCES

1.   Petrov A.A., Pospelov I.G., Shananin A.A. Opyt matematicheskogo modelirovaniya ekonomiki [An attempt at the mathematical modeling of an economy]. Moscow: Energoatomizdat Publ., 1996, 544 p. ISBN: 5-283-03169-1 .

2.   Petrov A.A., Pospelov I.G., Shananin A.A. Ot gosplana k neeffektivnomu rynku: matematicheskii analiz evolyutsii rossiiskikh ekonomicheskikh struktur [From Gosplan to Ineffective Market: Mathematical Analysis of Evolution of Russian Economic Structures]. UK: The Edwin Mellen Press, 1999, 392 p. ISBN: 0773432647 .

3.   Shananin A.A. Mathematical modeling of investments at an imperfect capital market. Trudy Inst. Mat. i Mekh. UrO RAN, 2019, vol. 25, no. 4, pp. 265–274 (in Russian). doi: 10.21538/0134-4889-2019-25-4-265-274 

4.   Cantor D.G., Lipman S.A. Investment selection with imperfect capital markets. Econometrica, 1983, vol. 51, no. 4, pp. 1121–1144. doi: 10.2307/1912055 

5.   Cantor D.G., Lipman S.A. Optimal investment selection with a multitude of projects. Econometrica, 1995, vol. 63, no. 5, pp. 1231–1240. doi: 10.2307/2171729 

6.   Adler L., Gale D. Arbitrate and growth rate for riskless investments in a stationary economy. Mathematical Finance, 1997, vol. 7, no. 1, pp. 73–81. doi: 10.1111/1467-9965.00023 

7.   Sonin I.M. Growth rate, internal rates of return and turnpikes in an investment model. Econ. Theory, 1995, vol. 5, no. 3, pp. 383–400. doi: 10.1007/BF01212325 

8.   Presman E.L., Sonin I.M. Growth rate, internal rates of return and financial bubbles. Moscow: TsEMI RAN Publ., 2000, 33 p. ISBN: 5-8211-0122-0 .

9.   Belen’kii V.Z. Ekonomicheskaya dinamika: analiz investitsionnykh proektov v ramkakh lineinoi modeli Neimana-Geila [Economical Dynamics: Analysis of Investment Projects in the Frames of Neumann-Gale Linear Model]. Moscow: TsEMI RAN, 2002, 78 p. ISBN: 5-8211-0212-X .

10.   Vashchenko M.P., Shananin A.A. The estimation of the yield of the pool of investment projects in the optimal invetsing problem for continuous time. Math. Models Comput. Simul., 2012, vol. 4, no. 5, pp. 497–508. doi: 10.1134/S2070048212050092 

11.   Shananin A.A., Vashchenko M.P., Zhang Sh. Financial bubbles existence in the Cantor–Lippman model for continuous time. Lobachevskii J. Math., 2018, vol. 39, no. 7, pp. 929–935. doi: 10.1134/S1995080218070181 

12.   Aubin J.P. L’analyse non lineaire et ses motivations economiques. Paris: Masson, 1984, 214 p. Translated to Russian under the title Nelineinyi analiz i ego ekonomicheskie prilozheniya. Moscow: Mir Publ., 1988, 264 p.

Cite this article as: A.A.Shananin. Analysis of the financial state of an investor based on the Cantor–Lippman model, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 1, pp. 293–306.