We consider a nonlinear control system in Euclidean space on a finite time interval with controls subject to geometric constraints. The question of constructing lower and upper (by inclusion) approximations of reachable sets of this system is studied. Under certain conditions, estimates are obtained for the discrepancy (in the Hausdorff metric) between the lower and upper approximations of the reachable sets.
Keywords: control system, control, differential inclusion, geometric constraints, reachable set, approximation
Received January 14, 2020
Revised February 6, 2020
Accepted February 10, 2020
Funding Agency: This work was supported by the Russian Foundation for Basic Research (projects no. 18-01-00264 and no. 18-01-00221).
Vladimir Nikolaevich Ushakov, Dr. Phys.-Math. Sci., RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics of Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ushak@imm.uran.ru
Maksim Vadimovich Pershakov, Krasovskii Institute of Mathematics and Mechanics of Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ushak@imm.uran.ru
REFERENCES
1. Kurzhanski A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow: Nauka Publ., 1977. 392 p.
2. Kurzhanskii A.B. Izbrannye trudy (Selected works). Moscow: Moscow State University Publ., 2009, 756 p. (in Russian)
3. Kurzhanski A.B., Filippova T.F. On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control. In: A.B. Kurzhanski (eds), Advances in Nonlinear Dynamics and Control. Ser. PSCT, vol. 17. Boston: Birkhauser, 1993, pp. 122–188.
doi: 10.1007/978-1-4612-0349-0_4
4. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y: Springer, 1987, 517 p. This book is substantially revised version of the monograph Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.
5. Pontryagin L.S. Linear differential games of pursuit. Math. USSR-Sb., 1981, vol. 40, no. 3, pp. 285–303. doi: 10.1070/SM1981v040n03ABEH001815
6. Nikol’skii M.S. Approximation of the feasibility set for a differential inclusion. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., 1987, no. 4, pp. 31–34 (in Russian).
7. Chernous’ko F.L. Otsenivanie fasovogo sostoianiia dinamicheskih sistem [Estimation of the phase state of dynamical systems]. Moscow: Nauka Publ., 1988, 319 p. ISBN: 5-02-013899-1 .
8. Kurzhanski A.B., Valyi I. Ellipsoidal techniques for dynamic systems: Control synthesis for uncertain systems. Dynamics and Control, 1992, vol. 2, no. 2, pp. 87–111. doi: 10.1007/BF02169492
9. Ovseevich A.I., Chernous’ko F.L. Two-sided estimates on the attainability domains of cotrolled systems. J. Appl. Math. Mech., 1982, vol. 46, no. 5, pp. 590–595. doi: 10.1016/0021-8928(82)90005-3
10. Gusev M.I., Zykov I.V. On extremal properties of boundary points of reachable sets for a system with integrally constrained control. IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 4082–4087. doi: 10.1016/j.ifacol.2017.08.792
11. Veliov V. On the time-discretization of control systems. SIAM J. Control Optim., 1997, vol. 35, no. 5, pp. 1470–1486. doi: 10.1137/S0363012995288987
12. Kostousova E.K. On the boundedness of outer polyhedral estimates for reachable sets of linear systems. Comput. Math. and Math. Phys., 2008, vol. 48, no. 6, pp. 918–932. doi: 10.1134/S0965542508060043
13. Guseinov K.G., Moiseyev A.A., Ushakov V.N. The approximation of reachable domains of control systems. J. Appl. Math. Mech., 1998, vol. 62, no. 2, pp. 169–175. doi: 10.1016/S0021-8928(98)00022-7
14. Gornov A.Yu. Vychislitel’nye tekhnologii resheniya zadach optimal’nogo upravleniya [The Computational Technologies for Solving Optimal Control Problems]. Novosibirsk: Nauka Publ., 2009, 278 p. ISBN: 978-5-02-023284-6 .
15. Lotov A.V. New external estimate for the reachable set of a nonlinear multistep dynamic system. Comput. Math. Math. Phys., 2018, vol. 58, no. 2, pp. 196–206. doi: 10.7868/S0044466918020060
16. Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V. On solving approach problems for control systems. Proc. Steklov Inst. Math., 2015, vol. 291, pp. 263–278. doi: 10.1134/S0371968515040214
Cite this article as: V.N. Ushakov, M.V. Pershakov. On two-sided approximations of reachable sets of control systems with geometric constraints on the controls, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 1, pp. 239–255; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2021, Vol. 313, Suppl. 1, pp. S211–S227.