E.K. Kostousova. On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints ... P. 141-155

The problems of reachability and construction of estimates of reachable sets are considered for discrete-time systems with initially linear structure and uncertainties in the initial conditions, matrices, and additive input actions. The uncertainties are restricted by given parallelepiped-valued, interval, and integral nonquadratic constraints, respectively. The systems under consideration turn out to be of bilinear type due to the uncertainty in the matrices. The reachable sets are considered not only in the original space $\mathbb {R}^{n}$ but also in the "extended" space $\mathbb {R}^{n+1}$, where the last coordinate $\mu$ corresponds to the current reserve of the additive input action. An exact description is given for the reachable sets $\mathcal {Z}[k]$ in the "extended" space using multivalued recurrence relations. Here, the representation of sets in the form of the union of their $\mu$-sections is used, and the recurrence relations include operations with sets; one of the operations (multiplication by an interval matrix) acts on each cross-section independently, and another combines the Minkowski sum and the union over cross-sections. The reachable sets $\mathcal {X}[k]$ in $\mathbb {R}^{n}$ are determined by the cross-sections of $\mathcal {Z}[k]$ corresponding to $\mu=0$. However, it is usually difficult to calculate $\mathcal {Z}[k]$ exactly from the above relations. Methods are proposed for the construction of parametrized families of external and internal polyhedral estimates of the sets $\mathcal {Z}[k]$ in the form of polytopes of a special type. On this basis, external parallelepiped-valued and internal parallelotope-valued estimates of $\mathcal {X}[k]$ are constructed. All estimates are found by explicit formulas from systems of recurrence relations.

Keywords: reachable set, integral constraints, uncertain matrix, polyhedral estimates, parallelepipeds, parallelotopes

Received November 13, 2019

Revised January 22, 2020

Accepted January 27, 2020

Elena Kirillovna Kostousova, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: kek@imm.uran.ru

REFERENCES

1.   Krasovskii N.N. Teoriya upravleniya dvizheniem [Theory of motion control]. Moscow: Nauka Publ., 1968, 476 p.

2.   Kurzhanski A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow: Nauka Publ., 1977, 392 p.

3.   Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes: theory and computation. Ser. Systems & Control: Foundations & Applications, Book 85, Basel: Birkhauser, 2014, 445 p. doi: 10.1007/978-3-319-10277-1 

4.   Kurzhanski A.B., Daryin A.N. Dynamic programming for impulse feedback and fast controls: The linear systems case. LNCIS, vol. 468, London: Springer, 2020, 275 p. doi: 10.1007/978-1-4471-7437-0 

5.   Lotov A.V. Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system. Dokl. Math., 2017, vol. 95, no. 1, pp. 95–98. doi: 10.1134/S1064562417010045 

6.   Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Differential Equations and Appl., 2007, vol. 14, no. 1–2, pp. 57–73. doi: 10.1007/s00030-006-4036-6 

7.   Kurzhanski A.B., Valyi I. Ellipsoidal calculus for estimation and control. Boston: Birkhauser, 1997, 321 p. ISBN: 978-0-8176-3699-9 .

8.   Chernousko F.L. State estimation for dynamic systems. Boca Raton: CRC Press, 1994, 304 р. ISBN: 0-8493-4458-1 . Original Russian text published in Chernous’ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov. Moscow: Nauka Publ., 1988, 319 p.

9.   Ananyev B.I., Gusev M.I., Filippova T.F. Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennost’yu [Control and Estimation of States of Dynamic Systems with Uncertainty]. Novosibirsk: Izdatelstvo SO RAN, 2018, 193 p. ISBN: 978-5-7692-1624-4 .

10.   Le V.T.H., Stoica C., Alamo T., Camacho E.F., Dumur D. Zonotopes: From guaranteed state-estimation to control. Croydon: Wiley-ISTE, 2013. 150 p. doi: 10.1002/9781118761588 

11.   Sharma U., Thangavel S., Gottu Mukkula A.R., Paulen R. Effective recursive parallelotopic bounding for robust output-feedback control. IFAC-PapersOnLine, 2018, vol. 51, no. 15, pp. 1032–1037. doi: 10.1016/j.ifacol.2018.09.058 

12.   Dreossi T., Dang T., Piazza C. Reachability computation for polynomial dynamical systems. Formal Methods in System Design, 2017, vol. 50, no. 1, pp. 1–38. doi: 10.1007/s10703-016-0266-3 

13.   Kostousova E.K. Outer polyhedral estimates of reachable sets in the “extended” phase space for linear discrete systems with integral bounds on controls. Vychisl. Tekhnol., 2004, vol. 9, no. 5, pp. 54–72 (in Russian).

14.   Tang W., Wang Z., Shen Y. Interval Estimation methods for discrete-time linear time-invariant systems. Systems and Control Letters, 2019, vol. 123, pp. 69–74. doi: 10.1016/j.sysconle.2018.11.001 

15.   Filippova T.F., Matviychuk O.G. Estimates of reachable sets of control systems with bilinear-quadratic nonlinearities. Ural Math. J., 2015, vol. 1, no. 1, pp. 45–54. doi: 10.15826/umj.2015.1.004 

16.   Mazurenko S.S. Partial differential equation for evolution of star-shaped reachability domains of differential inclusions. Set-Valued Var. Anal., 2016, vol. 24, no. 2, pp. 333–354. doi: 10.1007/s11228-015-0345-4 

17.   Sinyakov V.V. Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems. Differential Equations. 2015, vol. 51, no. 8, pp. 1097–1111. doi: 10.1134/S0012266115080145 

18.   Kostousova E.K. On polyhedral estimates for reachable sets of discrete-time systems with bilinear uncertainty. Automation and Remote Control, 2011, vol. 72, no. 9, pp. 1841–1851. doi: 10.1134/S0005117911090062 

19.   Kostousova E.K. State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques. IFAC-PapersOnLine, 2018, vol. 51, no. 32, pp. 245–250. doi: 10.1016/j.ifacol.2018.11.389 

20.   Chernousko F.L., Rokityanskii D.Ya. Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations. J. Optimiz. Theory Appl., 2000, vol. 104, no. 1, pp. 1–19. doi: 10.1023/A:1004687620019 

21.   Kostousova E.K. On polyhedral estimates for reachable sets of differential systems with bilinear uncertainty. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, vol. 18, no. 4, pp. 195–210 (in Russian).

Cite this article as: E.K. Kostousova. On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 1, pp. 141–155; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2021, Vol. 313, Suppl. 1, pp. S140–S154.