B.I. Ananyev. Estimation of states of multistage stochastic inclusions ... P. 12-26

Multistage stochastic inclusions of the form $z_k\in H_k(z_{k-1} ,\omega)$, where $z_k\in Z_k=X_kY_k$ and $k\in1:N$, are considered. We regard the projection of $z_k$ to $X_k$ as an unobservable state and the projection of $z_k$ to $Y_k$ as an observable state. The element $\omega$ belongs to a probability space $(\Omega,\mathcal {F},P)$, and the multifunction $H_k(z,\cdot)$ is measurable with respect to a $\sigma$-algebra $\mathcal {G}_k$. These $\sigma$-algebras are supposed to be independent for different $k$, and their union $\mathcal {F}_k=\sigma\big(\bigcup_{i\in1:k}\mathcal {G}_i\big)\subset\mathcal {F}$ characterizes an increasing accumulation of information. We consider three ways of estimating the unobservable states based on different methods of forming the set of transition probabilities. It is shown that these ways result in different sets of conditional distributions for the unobservable states of the process. The question of sufficient conditions for the coincidence of the considered filtering schemes is partially studied, and it is proved that, for finite state spaces, these schemes coincide in the case of a nonatomic probability space. A new class of Lebesgue selections is introduced for arbitrary multifunctions and is shown to be nonempty, in particular, for measurable simple rectangles on a nonatomic space. It is proved that the filtering schemes also coincide in the Lebesgue class for simple inclusions and selections defined on a nonatomic probability space.

Keywords: estimation, filtering, stochastic inclusions, selections, transition probabilities, conditional distributions

Received November 13, 2019

Revised January 22, 2020

Accepted January 27, 2020

Boris Ivanovich Ananyev, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: abi@imm.uran.ru

REFERENCES

1.   Ananyev B.I. One problem of statistically uncertain estimation. In: Proc. Intern. Conf. SCDG2019 (Yekaterinburg, 16–20 Sept.), 2019, Yekaterinburg: IMM UB of RAS, pp. 375–379. ISBN: 978-5-8295-0652-0 .

2.   Anan’ev B.I., Anikin S.A. Problem of reconstructing input signals under communication constraints. Autom. Remote Control, 2009, vol. 70, no. 7, pp. 1153–1164. doi: 10.1134/S0005117909070078 

3.   Anan’ev B.I. Correction of motion under communication constraints. Autom. Remote Control, 2010, vol. 71, no. 3, pp. 367–378. doi: 10.1134/S000511791003001X 

4.   Kats I.Ya., Kurzhanski A.B. Minimax estimation in multistage systems. Dokl. Akad. Nauk SSSR, 1975, vol. 221, no. 3, pp. 535–538 (in Russian).

5.   Anan’ev B.I. Minimax estimation of statistically uncertain systems under the choice of a feedback parameter. J. Math. Systems, Estimation, and Control, 1995, vol. 5, no. 2, pp. 1–17.

6.   Lebedev M.V., Semenikhin K.V. Minimax filtering in a stochastic differential system with non-stationary perturbations of unknown intensity. J. Comput. Syst. Sci. Int.., 2007, vol. 46, no. 2, pp. 206–217. doi: 10.1134/S1064230707020062 

7.   Nguyen Hung T. et al. Computing statistics under interval and fuzzy uncertainty. Berlin; Heidelberg: Springer-Verlag, 2012. 432 p. doi: 10.1007/978-3-642-24905-1 

8.   Kisielewicz M. Relationship between attainable sets of functional and set-valued functional stochastic inclusions. Stochastic Analysis and Applications, 2016, vol. 34, no. 6, pp. 1094–1110.

9.   Raol J.R., Gopalratnam G., Twala B. Nonlinear filtering. Concepts and engineering applications. Boca Raton: CRC Press, Taylor & Francis Group, 2017. ISBN: 9781498745178 .

10.   Miranda E., Couso I., Gil P. Approximations of upper and lower probabilities by measurable selections. Information Sciences, 2010, vol. 180, no. 8, pp. 1407–1417. doi: 10.1016/j.ins.2009.12.005 

11.   Bertsekas D.P., Shreve S.E. Stochastic optimal control: the discrete time case. Burlington, MA: Elsevier, 1978, 341 p. ISBN: 9780080956480 . Translated to Russian under the title Stokhasticheskoe optimal’noe upravlenie: sluchai diskretnogo vremeni. Moscow: Nauka Publ., 1985, 279 p.

12.   Shiryaev A.N. Probability. N Y etc.: Springer-Verlag, 1995, Ser. Graduate Texts in Mathematics, vol. 95, 624 p. ISBN: 0387945490 . Original Russian text (3rd ed.) published in Shiryaev A.N. Veroyatnost’-1. Moscow: Nauka Publ., 2004, 520 p.

13.   Neveu J. Mathematical foundations of the calculus of probability. San Francisco: Holden-Day, 1965, 223 p. Translated to Russian under the title Matematicheskie osnovy teorii veroyatnostei. Moscow: Mir Publ., 1969, 309 p.

14.   Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V. Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsial’nykh vklyuchenii [Introduction to the theory of multivalued maps and differential inclusions]. Moscow: KomKniga Publ., 2005, 215 p. ISBN: 5-484-00172-2 .

15.   Nguyen Hung T. On random sets and belief functions. J. Math. Anal. Appl., 1978, vol. 65, no. 3, pp. 531–542. doi: 10.1016/0022-247X(78)90161-0 

16.   Himmelberg C. Measurable relations. Fund. Math., 1975, vol. 87, pp. 53–72. doi: 10.4064/fm-87-1-53-72 

17.   Miranda E., Couso I., Gil P. Random intervals as a model for imprecise information. Fuzzy Sets and Systems, 2005, vol. 154, no. 3, pp. 386–412. doi: 10.1016/j.fss.2005.03.001 

Cite this article as: B.I. Ananyev. Estimation of states of multistage stochastic inclusions, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 1, pp. 12–26.