D.B. Bazarkhanov. Linear recovery of pseudodifferential operators on classes of smooth functions on an $m$-dimensional torus. II ... P. 15-30

We formulate and discuss a problem of optimal recovery of values $T_af$ of pseudodifferential operators $T_a$ on an $m$-dimensional torus $\mathbb{T}^m$ with symbols $a$ from the classes $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$ on distributions $f$ from the classes $\mathrm{B}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Nikol'skii--Besov type and $\mathrm{L}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Lizorkin--Triebel type from finite spectral information about the symbol of the operator and the distribution (finite sets of Fourier coefficients of the symbol and the distribution). We show that the recovery method $\Upsilon_{\Lambda(\gamma, N)}$ constructed and studied in 2018 in the first part of this research is order-optimal (or at least linear order-optimal) in this problem for a number of relations between the parameters of the symbol class, the class of distributions, and the ambient space. Furthermore, the (linear) optimal recovery error has exact order of the corresponding Fourier widths of the classes $\mathrm{B}^{s - \tau\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ and $\mathrm{L}^{s - \tau\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$, respectively (Theorem 1). Simultaneously, the claim of Theorem 1 from part I of this research is proved under ``natural'' conditions on the differential parameters $\tau$ of the symbol classes $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$ and $s$ of the spaces $B^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Nikol'skii--Besov type and $L^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Lizorkin--Triebel type. It is also established that the upper estimates in Theorem 1 are order-exact (see Theorem 3).

Keywords: pseudodifferential operator on an $m$-dimensional torus, class of symbols (of product type), Nikol'skii-Besov / Lizorkin-Triebel space of distributions, optimal recovery of an operator class, error bounds of optimal recovery, Fourier width

Received August 9, 2019

Revised November 8, 2019

Accepted November 25, 2019

Funding Agency: This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP05133257).

Dauren B. Bazarkhanov, Сand. Sci. (Phys.-Math.), Prof., Institute of Mathematics and Math Modeling, Almaty, 050010 Kazakhstan, e-mail: dauren.mirza@gmail.com

REFERENCES

1.   Micchelli C.A., Rivlin T.J. A survey of optimal recovery. In: Optimal estimation in approximation theory. N.Y. etc.: Plenum Press, 1977, pp. 1–54. doi: 10.1007/978-1-4684-2388-4_1 

2.   Micchelli C.A., Rivlin T.J. Lectures on optimal recovery. In: Turner P.R. (ed.), Numerical Analysis Lancaster (1984), Lecture Notes in Mathematics, vol. 1129, Berlin: Springer–Verlag, pp. 21–93. doi: 10.1007/BFb0075157 

3.   Traub J., Wozniakowski H. A general theory of optimal algorithms. ACM Monograph Ser., N Y etc.: Acad. Press, 1980, 341 p. ISBN: 0126976503 . Translated to Russian under the title Obshchaya teoriya optimal’nykh algoritmov. Moscow: Mir Publ., 1983, 382 p.

4.   Arestov V.V. Optimal recovery of operators and related problems. Proc. Steklov Inst. Math., 1990, no. 4, pp. 1–20.

5.   Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems. Russ. Math. Surv., 1996, vol. 51, no. 6, pp. 1093–1126. doi: 10.1070/RM1996v051n06ABEH003001 

6.   Zhensykbaev A.A. Problemy vosstanovleniya operatorov (Operator recovery problems). Moscow; Izhevsk: RKhD Publ., 2003, 411 p. ISBN: 5-93972-268-7 .

7.   Dinh Dung, Temlyakov V.N., Ullrich T. Hyperbolic cross approximation. Basel: Birkh$\ddot{mathrm{a}}$user Springer, 2018, 218 p. doi: 10.1007/978-3-319-92240-9 

8.   Bazarkhanov D.B. Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I. Proc. Steklov Inst. Math., 2010, vol. 269, pp. 2–24. doi: 10.1134/S0081543810020021 

9.   Bazarkhanov D.B. Wavelet approximation and Fourier widths of classes of periodic functions of several variables. II. Analysis math., 2012, vol. 38, no. 4, pp. 249–289. doi: 10.1007/s10476-012-0401-3 

10.   Temlyakov V.N. Estimates for the asymptotic characteristics of classes of functions with bounded mixed derivative or difference. Proc. Steklov Inst. Math., 1990, vol. 189, pp. 161–197.

11.   Ruzhansky M., Turunen V. Pseudo-differential operators and symmetries: background analysis and advanced topics. Basel: Birkh$\ddot{\mathrm{a}}$user Springer, 2009, 709 p. doi: 10.1007/978-3-7643-8514-9 

12.   Nikol’skii S.M. Approximation of Functions of Several Variables and Embedding Theorems. Berlin; N Y: Springer-Verlag, 1975, 420 p. doi: 10.1007/978-3-642-65711-5 . Original Russian text (2nd ed.) published in Nikol’skii S.M. Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya. Moscow: Nauka Publ., 1977, 456 p.

13.   Triebel H. Theory of function spaces. Basel: Birkh$\ddot{\mathrm{a}}$user, 1983. ISBN: 3764313811 . Translated to Russian under the title Teoriya funktsional’nykh prostranstv. Moscow: Mir Publ., 1986.

14.   Schmeisser H.J., Triebel H. Topics in Fourier analysis and function spaces. Chichester: J. Wiley & Sons, 1987, 300 p. ISBN: 0-471-90895-9 .

15.   Bazarkhanov D. Estimates for the widths of classes of periodic functions of several variables. I. Eurasian Math. J., 2010, vol. 1, no. 3, pp. 11–26.

16.   Babenko K.I. (eds) Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov dlya zadach matematicheskoi fiziki [Theoretical principles and construction of numerical algorithms of mathematical physics]. Moscow: Nauka Publ., 1979, 295 p.

17.   Novak E., Wozniakowski H. Tractability of multivariate problems. Vol. I: Linear information. EMS Tracts in Mathematics, Zurich: EMS, 2008. ISBN: 978-3-03719-026-5 .

18.   Novak E., Wozniakowski H. Tractability of multivariate problems. Volume II: Standard information for functionals. EMS Tracts in Mathematics, Zurich: EMS, 2010. ISBN: 9783037190845 .

19.   Novak E., Wozniakowski H. Tractability of multivariate problems. Volume III: Standard information for operators. EMS Tracts in Mathematics, Zurich: EMS, 2012. ISBN: 9783037191163 .

20.   Magaril-Il’yaev G.G., Osipenko K.Yu. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error. Sb. Math., 2002, vol. 193, no. 3, pp. 387–407. doi: 10.1070/SM2002v193n03ABEH000637 

21.   Vysk N.D., Osipenko K.Yu. Optimal Reconstruction of the Solution of the Wave Equation from Inaccurate Initial Data. Math. Notes, 2007, vol. 81, no. 6, pp. 723–733. doi: 10.1134/S0001434607050203 

22.  Magaril-Il’yaev G.G., Osipenko K.Yu. On best harmonic synthesis of periodic functions. J. Math. Sci., 2015, vol. 209, no. 1, pp. 115–129. doi: 10.1007/s10958-015-2489-z 

23.   Osipenko K.Yu. Optimal recovery of linear operators in non-Euclidean metrics. Sb. Math., 2014, vol. 205, no. 10, pp. 1442–1472. doi: 10.1070/SM2014v205n10ABEH004425 

24.   Pereverzev S.V. Complexity of the problem of finding the solutions of fredholm equations of the second kind with smooth kernels. I. Ukr. Math. J., 1988, vol. 40, no. 1, pp. 71–76. doi: 10.1007/BF01056451 

25.  Pereverzev S.V. Complexity of the problem of finding the solutions of Fredholm equations of the second kind with smooth kernels. II. Ukr. Math. J., 1989, vol. 41, no. 2, pp. 169–173. doi: 10.1007/BF01060382 

26.   Pereverzev S.V. Hyperbolic cross and the complexity of the approximate solution of Fredholm integral equations of the second kind with differentiable kernels. Sib. Math. J., 1991, vol. 32, no. 1, pp. 85–92. doi: 10.1007/BF00970164 

27.   Heinrich S. Complexity of integral equations and relations to s-numbers. J. Complexity, 1993, vol. 9, no. 1, pp. 141–153. doi: 10.1006/jcom.1993.1010 

28.   Frank K., Heinrich S., Pereverzev S.V. Information complexity of multivariate Fredholm integral equations in Sobolev classes. J. Complexity, 1996, vol. 12, no. 1, pp. 17–34. doi: 10.1006/jcom.1996.0004 

Cite this article as: D.B.Bazarkhanov. Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II., Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 4, pp. 15–30.