For periodic functions differentiable in the sense of Weyl and belonging to the space $L_2$, sharp inequalities of Jackson–Stechkin type are obtained for a special $m$th-order modulus of continuity generated by the Steklov operator (function). Similar characteristics of smoothness of functions were considered earlier by V. A. Abilov, F. V. Abilova, V. M. Kokilashvili, S. B. Vakarchuk, V. I. Zabutnaya, K. Tukhliev, etc. For classes of functions defined in terms of these characteristics, we solve a number of extremal problems of polynomial approximation theory.
Keywords: best approximation, periodic function, special modulus of continuity, Jackson–Stechkin inequalities, extremal problems
Received August 20, 2019
Revised October 31, 2019
Accepted November 11, 2019
Mirgand Shabozovich Shabozov, Dr. Phys.-Math. Sci., Prof., Tajik National University, Dushanbe, 734025 Republic of Tajikistan, e-mail: shabozov@mail.ru
Adolat Azamovna Shabozova, Tajik National University, Dushanbe, 734025 Republic of Tajikistan, e-mail: shabozova91@mail.ru
REFERENCES
1. Ditzian Z., Totik V. Moduli of Smoothness. Springer Ser. Comput. Math., vol. 9. N Y: Springer-Verlag, 1987. 227 p. ISBN: 978-1-4612-4778-4 .
2. Runovskii K.V. On approximation by families of linear polynomial operators in $L_{2}$ spaces, $0<p<1$. Russian Acad. Sci. Sb. Math., 1995, vol. 82, no. 2, pp. 441–459. doi: 10.1070/SM1995v082n02ABEH003574
3. Vasil’ev S. Sharp Jackson–Stechkin inequality in $L_{2}$ with the modulus of continuity generated by an arbitrary finite-difference operator with constant coefficients. Dokl. Math., 2002, vol. 66, no. 1, pp. 5-8.
4. Kozko A.I., Rozhdestvenskii A.V. On Jackson’s inequality for generalized moduli of continuity. Math. Notes, 2003, vol. 73, no. 5, pp. 736–741. doi: 10.1023/A:1024029208953
5. Vakarchuk S.B. Exact Constants in Jackson-type inequalities and exact values of widths. Math. Notes., vol. 78, no. 5-6, pp. 735–739. doi: 10.1007/s11006-005-0176-y
6. Ivanov A.V., Ivanov V.I. Optimal arguments in Jackson’s inequality in the power-weighted space $L_2(\mathbb{R}^{d})$. Math. Notes, 2013, vol. 94, no. 3-4, pp. 320–329. doi: 10.1134/S0001434613090034
7. Potapov M. On the application of a generalized translation operator in the approximation theory. Mosc. Univ. Math. Bull., 1998, vol. 53, no. 3, pp. 37–47.
8. Potapov M.K. On the application of asymmetric generalized shift operators in the theory of approximations. Trudy Matem. Tsentra im N.I. Lobachevskogo (Kazan’), 2001, vol. 78, pp. 185–189 (in Russian).
9. Potapov M.K. Properties of a Family of Operators. Math. Notes, 2001, vol. 69, no. 3, pp. 373–386. doi: 10.1023/A:1010287509486
10. Napedenina A. Coincidence of classes of functions determined by a generalized shear operator or the best approximation order. Mosc. Univ. Math. Bull., 2004, vol. 59, no. 2, pp. 32–36.
11. Abilov V.A., Abilova F.V. Problems in the approximation of $2\pi$-periodic functions by Fourier sums in the space $L_{2}(2\pi)$. Math. Notes, 2004, vol. 76, no. 5-6, pp. 749–757. doi: 10.1023/B:MATN.0000049674.45111.71
12. Kokilashvili V., Yildirir Y.E. On the approximation in weighted Lebesgue spaces. Proc. A.Ramzadze Math. Inst., 2007, vol. 143, pp. 103–113.
13. Vakarchuk S.B., Zabutnaya V.I. Jackson – Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_{2}$, Math. Notes, 2012, vol. 92, no. 3-4, pp. 458–472. doi: 10.1134/S0001434612090180
14. Shabozov M.Sh., Tukhliev K. Best polynomial approximations and the widths of function classes in $L_{2}$. Math. Notes, 2013, vol. 94, no. 6, pp. 930–937. doi: 10.1134/S0001434613110291
15. Weyl H. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 1917, vol. 62, no. 1-2, pp. 296–302.
16. Taikov L.V. Inequalities containing best approximations and the modulus of continuity of functions in $L_{2}$. Math. Notes Acad. Sci. of the USSR, 1976, vol. 20, no. 3, pp. 797–800. doi: 10.1007/BF01097254
17. Shabozov M.S., Yusupov G.A. Best polynomial approximations in $L_{2}$ of classes of $2\pi$-periodic functions and exact values of their widths. Math. notes, 2011, vol. 90, no. 5-6, pp. 748–757. doi: 10.1134/S0001434611110125
Cite this article as: M.Sh.Shabozov, A.A.Shabozova. Sharp inequalities of Jackson–Stechkin type for periodic functions in $L_2$ differentiable in the Weyl sense, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 4, pp. 255–264.