We study the relation between extensions of the Hewitt realcompactification type and spaces of strictly $\tau$-$F$-functions. A criterion is obtained for the realcompleteness of the space of Baire functions of class $\alpha$. It is proved that the space $B(X,G)$ of Baire functions from a $G$-$z$-normal space $X$ to a noncompact metrizable separable space $G$ is Lindel$\ddot{\mathrm o}$f if and only if $X$ is countable.
Keywords: realcomplete spaces, weak functional tightness, Baire function, $\tau$-placedness, Hewitt realcompactification
Received June 3, 2019
Revised August 12, 2019
Accepted September 5, 2019
Alexander Vladimirovich Osipov, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620083 Russia; Ural State University of Economicis, Yekaterinburg, 620144 Russia, e-mail: OAB@list.ru
REFERENCES
1. Hewitt E. Rings of real-valued continuous functions, I. Trans. Amer. Math. Soc., 1948, vol. 64, no. 1, pp. 45–99. doi: 10.2307/1990558
2. Archangel’skii A.V., Ponomariov V.I. Fundamentals of General Topology: Problems and Exercises. N Y: Springer, 1984, 416 p. ISBN: 978-90-277-1355-1 . Original Russian text published in Arkhangel’skii A.V., Ponomarev V.I. Osnovy obshchei topologii v zadachakh i uprazhneniyakh. Moscow: Nauka Publ., 1974, 424 p.
3. Engelking R. General Topology. Sigma series in pure mathematics, vol. 6, Berlin: Heldermann Verlag, 1989, 535 p. ISBN: 3885380064 . Translated to Russian under the title Obshchaya topologiya, Moscow: Mir Publ., 1986, 752 p.
4. Nachbin L. Topological vector spaces of continuous functions. Proc. Nat. Acad. Sci. (USA), 1954, vol. 40, no. 6, pp. 471–474. doi: 10.1073/pnas.40.6.471
5. Arkhangel’skii A.V. Topological function spaces. Math. its Appl., vol. 78, Dordrecht: Kluwer, 1992, 205 p. ISBN: 0-7923-1531-6 . Original Russian text published in Arkhangel’skii A.V. Topologicheskie prostranstva funktsii, Moscow: MGU Publ., 1989, 222 p.
6. Arkhangel’skii A.V. Structure and classification of topological spaces and cardinal invariants. Russian Math. Surveys, 1978, vol. 33, no. 6, pp. 33–96. doi: 10.1070/RM1978v033n06ABEH003884
7. Arhangel’skii A.V. Functional tightness, $q$-spaces and $\tau$-embeddings. Comment. Math. Univ. Carol., 1983, vol. 24, no. 1, pp. 105–120.
8. Okunev O.G. On function spaces in the topology of pointwise convergence: Hewitt extension and $\tau$-continuous functions. Vestn. Mosk. Univ., Ser. I, 1985, no. 4, pp. 78–80.
9. Kuratowski K. Topology. Vol. I. N Y; London: Acad. Press, 1966, 560 p. ISBN: 978-0-12-429201-7 . Translated to Russian under the title Topologiya. T. 1, Moscow: Mir Publ., 1966, 594 p.
10. Arhangel’skii A., Tkachenko M. Topological group and related structure. Ser. Atlantis Studies in Math., vol. 1, Paris: Atlantis Press, 2008, 781 p. doi: 10.2991/978-94-91216-35-0
11. Stone A.H. Paracompactness and product spaces. Bull. Amer. Math. Soc., 1948, vol. 54, pp. 977–982. doi: 10.1090/S0002-9904-1948-09118-2 .
12. Pestriakov A.V. Berovskie funktsii i prostranstva berovskikh funktsii (Baire functions and spaces of Baire functions). Cand. Sci. (Phys.–Math.) Dissertation. Sverdlovsk: Ural State of University Publ., 1987, 74 p.
Cite this article as: A.V.Osipov. On the Hewitt realcompactification and τ-placedness of function spaces, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 4, pp. 177-183.