S.I. Novikov. Extremal function interpolation for a second-order linear differential operator ... P.164-176

The paper is devoted to the problem of extremal interpolation of functions with the minimum value of the uniform norm of the linear differential operator ${\cal L}f(t)=f''(t)+(1/t)f'(t)$ on a class of interpolated values of these functions at the points of a uniform grid $\{kh: k=1,2,\ldots,N\}$ with step $h$ $(h>0)$ for a rather large but finite number $N$ of knots of the grid. The class of interpolation data is defined by a difference analog of the differential operator ${\cal L}$. The difference operator is determined by the condition of vanishing of the restrictions of functions from the kernel of the differential operator to the uniform grid. The main result of the paper is a two-sided estimate for an extremal interpolation constant of Subbotin's type with a correct order with respect to the step $h$. The problem of finding this constant can also be interpreted as a generalized interpolation problem of Favard's type considered on the described class of interpolation data. We use this one-dimensional result to derive an upper bound in a similar problem for the uniform norm of the Laplace operator of a function of two variables in the case of transfinite interpolation at a finite number of concentric circles centered at the origin.

Keywords: interpolation, differential operator, difference operator, Laplace operator

Received Juny 24, 2019

Revised September 9, 2019

Accepted October 14, 2019

Novikov Sergey Igorevich, Cand. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia, e-mail: Sergey.Novikov@imm.uran.ru

REFERENCES

1.   Gordon W.J., Hall C.A. Transfinite element methods: blending–function interpolation over arbitrary curved element domains. Numer. Math., 1973, vol. 21, no. 2, pp. 109–129.

2.   Bejancu A. Thin plate splines for transfinite interpolation at concentric circles. Math. Model. Anal., 2013, vol. 18, no. 3, pp. 446–460. doi: 10.3846/13926292.2013.807317 

3.   Bejancu A. Transfinite thin plate spline interpolation. Constr. Approx., 2011, vol. 34, no. 2, pp. 237–256. doi: 10.1007/s00365-010-9118-3 

4.   Favard J. Sur l’interpolation. J. Math. Pures Appl., 1940, vol. 19, no. 9, pp. 281–306.

5.   Fikhtenholtz G.M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of differential and integral calculus]. Vol. 1. Moscow: Nauka Publ., 1970, 608 p. (in Russian). ISBN: 978-5-8114-0673-9 .

6.   Subbotin Yu.N. On the connection between finite differences and corresponding derivatives. Tr. Math. Inst. Steklov, 1965, vol. 78, pp. 24–42 (in Russian).

7.   Sharma A., Tzimbalario J. Certain linear differential operators and generalized differences. Math. Notes, 1977, vol. 21, no. 2, pp. 91–97. doi: 10.1007/BF02320546 

8.   Shevaldin V.T. Some problems of extremal interpolation in the mean for linear differential operators. Proc. Steklov Inst. Math., 1985, vol. 164, pp. 233–273.

9.   Mitrinovic′ D.S., Vasic′ P.M. Analytic inequalities. Berlin etc.: Springer Verlag, 1970, 400 p. doi: 10.1007/978-3-642-99970-3 

10.   Kurosh A.G. Higher algebra. Moscow: Mir Publ., 1988, 428 p. ISBN: 9785030001319 . Original Russian text published in Kurosh A.G. Kurs vysshei algebry. Moscow: Nauka Publ., 1971, 432 p.

11.   Bakhvalov N.S. Numerical methods. Moscow: Mir Publ., 1977, 663 p. Original Russian text published in Bakhvalov N.S. Chislennye metody. Moscow: Nauka Publ., 1975, 632 p.

12.   Zav’yalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splain-funktsii [Methods of spline-functions]. Moscow: Nauka Publ., 1980, 352 p.

13.   Fisher S., Jerome J. Minimum norm extremals in function spaces. Lecture Notes in Math, vol. 479. Berlin; Heidelberg: Springer-Verlag, 1975, 209 p. doi: 10.1007/BFb0097059 

14.   Novikov S.I. Interpolation with minimal norm of the Laplace operator in a ball. Zbirnik prats Inst. Math. NAN Ukraine, 2008, vol. 5, no. 1, pp. 248–262 (in Russian).

Cite this article as: S.I.Novikov. Extremal function interpolation for a second-order linear differential operator, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 4, pp. 164–176.