E.K. Makarov, S.N. Popova. On the definition of uniform complete observability ... P. 129-140

The classical definitions of uniform complete controllability and uniform complete observability were formulated by R. Kalman for systems with coefficients from the class $L^{\rm loc}_2({\mathbb R})$. E.L. Tonkov proposed alternative dual definitions for systems with bounded measurable coefficients. For the theory of control of asymptotic invariants of differential systems, it is useful to study the properties of uniform complete controllability and observability for systems with arbitrary coefficients. We propose a definition of uniform complete observability on an arbitrarily given family of closed intervals of the real axis under the assumption that some spaces of controls and measured outputs of the system are defined on each of the intervals. Here we do not impose any constraints on the system apart from the requirement of the existence of solutions, their uniqueness, and extendability to the whole real axis. Some basic properties of the introduced notions are given. It is established that, in the general case, uniform complete controllability and uniform complete observability are not dual properties for linear systems. Sufficient conditions for the presence of such a duality are obtained. Similar results are formulated for the pair "identifiability - reachability".

Keywords: linear systems, uniform complete observability, uniform complete controllability

Received July 11, 2019

Revised July 25, 2019

Accepted July 29, 2019

Funding Agency: The work of the second author was supported by the Russian Foundation for Basic Research (project no. 18–51–41005).

Evgenii Konstantinovich Makarov, Dr. Phys.-Math. Sci., Prof., Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, 220072 Belarus, e-mail: jcm@im.bas-net.by

Svetlana Nikolaevna Popova, Dr. Phys.-Math. Sci., Udmurt State University, Izhevsk, 426034 Russia, e-mail: udsu.popova.sn@gmail.com


1.   Kalman R.E., Falb P.L., Arbib M.A. Topics in mathematical system theory. International Series in Pure and Applied Mathematics, N Y etc.: McGraw-Hill Book Company, 1969, 358 p. ISBN: 0754321069 . Translated to Russian under the title Ocherki po matematicheskoi teorii sistem. Moscow: Mir Publ., 1971, 400 p.

2.   Gaishun I.V. Vvedenie v teoriyu lineinykh nestatsionarnykh sistem [Introduction to the theory of linear nonstationary systems]. Minsk: Natsional’naya Akademiya Nauk Belarusi, Institut Matematiki, 1999, 409 p. ISBN: 985-6499-10-0 .

3.   Kalman R.E. Contribution to the theory of optimal control. Boletin de la Sociedad Matematiсa Mexicana, 1960, vol. 5, no. 1, pp. 102–119.

4.   Makarov E.K., Popova S.N. On the definition of uniform complete controllability. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2017, vol. 27, no. 3, pp. 326–343 (in Russian). doi: 10.20537/vm170304 

5.   Makarov E.K., Popova S.N. Upravlyaemost’ asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem [Controllability of asymptotic invariants of non-stationary linear systems]. Minsk: Belarus. Navuka Publ., 2012, 407 p. ISBN: 978-985-08-1393-0 .

6.   Popova S.N. Zadachi upravleniya pokazatelyami Lyapunova [Problems of controllability of Lyapunov exponents]. Candidate Sci. (Phys.-Math.) Dissertation (01.01.02). Izhevsk, 1992, 103 p.

7.   Zaitsev V.A. Criteria for uniform complete controllability of a linear system. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 2, pp. 157–179 (in Russian). doi: 10.20537/vm150202 .

8.   Tonkov E.L. A criterion of uniform controllability and stabilization of a linear recurrent system. Differ. Uravn., 1979, vol. 15, no. 10, pp. 1804–1813 (in Russian).

9.   Vasil’ev V.V., Tonkov E.L. Criterion of uniform full observability of a linear extremely recurrent system. In: Problems of the modern theory of periodic motions. Izhevsk, 1980, no. 4, pp. 39–42 (in Russian).

10.   Tonkov E.L. K teorii lineinykh upravlyaemykh sistem [On the theory of linear control systems]. Izhevsk: UdGU Publ., 2018, 228 p.

Cite this article as: E.K. Makarov, S.N. Popova. On the definition of uniform complete observability, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 3, pp. 129–140.