Vol. 25, no. 1, 2019
We consider a regularization of the classical Lagrange principle and Pontryagin maximum principle in convex programming, optimal control, and inverse problems. We discuss two basic questions, why a regularization of the classical optimality conditions (COCs) is necessary and what it gives, using the example of the “simplest” problems of constrained infinite-dimensional convex optimization. The so-called regularized COCs considered in the paper are expressed in terms of the regular classical Lagrange and Hamilton–Pontryagin functions and are sequential generalizations of their classical analogs. They (1) “overcome” the possible instability and infeasibility of the COCs, being regularizing algorithms for the solution of optimization problems, (2) are formulated as statements on the existence of bounded minimizing approximate solutions in the sense of Warga in the original problem and preserve the general structure of the COCs, and (3) lead to the COCs “in the limit.” All optimization problems in the paper depend on an additive parameter in the infinite-dimensional equality constraint (the perturbation method). As a result, it is possible to study the connection of regularized COCs with the subdifferential properties of the value functions of the optimization problems.
Keywords: optimal control, inverse problem, convex programming, perturbation method, Lagrange principle, Pontryagin maximum principle, dual regularization
Received December 14, 2018
Revised February 14, 2019
Accepted February 26, 2019
Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-07-00782).
Mikhail Iosifovich Sumin, Dr. Phys.-Math. Sci., Prof., Nizhnii Novgorod State University, Nizhnii Novgorod, 603950 Russia, e-mail: m.sumin@mail.ru
Cite this article as: M.I. Sumin. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 1, pp. 279-296.
REFERENCES
1. Sumin M.I. Regularized parametric Kuhn–Tucker theorem in a Hilbert space. Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1489–1509. doi: 10.1134/S0965542511090156
2. Sumin M.I. Stable sequential convex programming in a Hilbert space and its application for solving unstable problems. Comput. Math. Math. Phys., 2014, vol. 54, no. 1, pp. 22–44. doi: 10.1134/S0965542514010138
3. Vasil’ev F.P. Metody optimizatsii [Optimization methods]. Moscow: MTsNMO Publ., 2011. Vol. 1: 620 p., ISBN: 978-5-94057-707-2 ; Vol. 2: 433 p., ISBN: 978-5-94057-708-9 .
4. Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal control. N Y: Plenum Press, 1987, 309 p. doi: 10.1007/978-1-4615-7551-1
5. Sumin M.I. A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation. Comput. Math. Math. Phys., 2004, vol. 44, no. 11, pp. 1903–1921.
6. Sumin M.I. Duality-based regularization in a linear convex mathematical programming problem. Comput. Math. Math. Phys., 2007, vol. 47, no. 4, pp. 579–600. doi: 10.1134/S0965542507040045
7. Sumin M.I. Parametric dual regularization for an optimal control problem with pointwise state constraints. Comput. Math. Math. Phys., 2009, vol. 49, no. 12, pp. 1987–2005. doi: 10.1134/S096554250912001X
8. Warga J. Optimal control of differential and functional equations. N Y: Acad. Press, 1972, 531 p. ISBN: 0127351507 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami. Moscow: Nauka Publ., 1977, 624 p.
9. Sumin M.I. Regularization of Pontryagin maximum principle in optimal control of distributed systems. Ural Math. J., 2016, vol. 2, no. 2, pp. 72–86. doi: 10.15826/umj.2016.2.008
10. Sumin M.I. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and inverse problems. IFAC PapersOnLine, 2018, vol. 51, no. 32, pp. 871–876. doi: 10.1016/j.ifacol.2018.11.435
11. Sumin M.I. Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives. Vestnik Tambov. Univ. Ser. Estestvennye i Tekhnicheskie Nauki, 2018, vol. 23, no. 124, pp. 757–775 (in Russian). doi: 10.20310/1810-0198-2018-23-124-757-775 .
12. Sumin M.I. Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov: Uchebnoe posobie [Ill-posed problems and their solution methods. Materials for lectures for senior students: Textbook]. Nizhnii Novgorod: Nizhnii Novgorod State Univ. Publ., 2009, 289 p. ISBN: 978-5-91326-160-1 .
13. Sumin M.I. Suboptimal control of distributed-parameter systems: Minimizing sequences and the value function. Comput. Math. Math. Phys., 1997, vol. 37, no. 1, pp. 21–39.
14. Smirnov V.I. A course of higher mathematics. Vol. V. Oxford: Pergamon, 1964, 638 p. ISBN: 9781483139371 . Original Russian text published in Smirnov V.I. Kurs vysshei matematiki. Vol. 5. Moscow: Gos. Izd-vo Fiz.-Mat. Lit., 1959, 656 p.
15. Loewen P.D. Optimal control via nonsmooth analysis. CRM Proc. and Lecture Notes, vol. 2. Providence, RI: Amer. Math. Soc., 1993, 158 p. ISBN: 0-8218-6996-5 .
16. Krein S.G. Linear equations in Banach spaces. Boston, Basel, Stuttgart: Birkha$\ddot{\mathrm{u}}$ser, 1982, 105 p. doi: 10.1007/978-1-4684-8068-9 . Original Russian text published in Krein S.G. Lineinye uravneniya v banakhovom prostranstve. Moscow: Nauka Publ., 1971, 104 p.
17. Trenogin V.A. Funktsional’nyi analiz [Functional analysis]. Moscow: Nauka Publ., 1980, 496 p. ISBN: 5020148911 .
18. Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Linear and quasilinear equations of parabolic type. Providence, R.I.: AMS, 1968, 648 p. ISBN: 978-0-8218-1573-1 . Original Russian text published in Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Moscow: Nauka Publ., 1967, 736 p.
19. Plotnikov V.I. An energy inequality and the overdeterminacy property of a system of eigenfunctions. Math. USSR-Izv., 1968, vol. 2, no. 4, pp. 695–707. doi: 10.1070/IM1968v002n04ABEH000656
20. Plotnikov V.I. Uniqueness and existence theorems and apriori properties of generalized solutions. Sov. Math., Dokl., 1965, vol. 6, pp. 1405–1407.
21. Kuterin F.A., Sumin M.I. On the regularized Lagrange principle in iterative form and its application for solving unstable problems. Mathematical Models and Computer Simulations, 2017, vol. 9, no. 3, pp. 328–338. doi: 10.1134/S2070048217030085
22. Kuterin F.A., Sumin M.I. Stable iterative Lagrange principle in the convex programming as a tool for solving unstable problems. Comput. Math. Math. Phys., 2017, vol. 57, no. 1, pp. 71–82. doi: 10.1134/S0965542517010092
23. Kalinin A.V., Sumin M.I., Tyukhtina A.A. Inverse final observation problems for Maxwell’s equations in the quasi-stationary magnetic approximation and stable sequential Lagrange principles for their solving. Comput. Math. Math. Phys., 2017, vol. 57, no. 2, pp. 189–210. doi: 10.1134/S0965542517020075
24. Aubin J.P. L’analyse non lin$\acute{e}$aire et ses motivations $\acute{e}$conomiques. Paris: Masson, 1984, 214 p. Translated to Russian under the title Nelineinyi analiz i ego ekonomicheskie prilozheniya. Moscow: Mir Publ., 1988, 264 p.
25. Kuterin F.A., Sumin M.I. The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system. Vestnik Udmurt. Univ. Matematika. Mekhanika. Komp‘yuternye Nauki, 2016, vol. 26, no. 4, pp. 474–489 (in Russian). doi: 10.20537/vm160403
26. Kuterin F.A., Sumin M.I. The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system. Vestnik Udmurt. Univ. Matematika. Mekhanika. Komp‘yuternye Nauki, 2017, vol. 27, no. 1, pp. 26–41 (in Russian). doi: 10.20537/vm170103
27. Sumin M.I. Maximum principle in suboptimal control theory of distributed-parameter systems with operator constraints in a Hilbert space. J. Math. Sci., 2001, vol. 104, no. 2, pp. 1060–1086. doi: 10.1023/A:1009535725511