L.S. Maergoiz. Analytic continuation methods for multivalued functions of one variable and their application to the solution of algebraic equations ... P. 120-135

Vol. 25, no. 1, 2019

The paper discusses several methods of analytic continuation of a multivalued function of one variable given on a part of its Riemann surface in the form of a Puiseux series generated by the power function $z=w^{1/\rho}$, where $\rho>1/2$ and $\rho\neq 1$. We present a many-sheeted variant of a theorem of G. P$\acute{\mathrm{o}}$lya describing the relation between the indicator and conjugate diagrams for entire functions of exponential type. The description is based on a construction of V. Bernstein for the many-sheeted indicator diagram of an entire function of order $\rho\neq 1$ and of normal type. The summation domain of a "proper" Puiseux series (a many-sheeted "Borel polygon") is found with the use of a generalization of the Borel method. This result seems to be new even in the case of power series. The theory applies to describe the domains of analytic continuation of Puiseux series representing the inverse functions for the rational ones. As but one consequence we elaborate a new approach to solution of algebraic equations.

Keywords: entire function, order, indicator, Puiseux series, multivalued function, many-sheeted diagram, concave diagram, indicator diagram, conjugate diagram, Riemann surface, analytic continuation, solution of algebraic equations

Received November 14, 2018

Revised January 17, 2019

Accepted January 21, 2019

Lev Sergeevich Maergoiz, Dr. Phys.-Math. Sci., Prof., Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Academgorodok, 50, Krasnoyarsk, 660036 Russia, e-mail: bear.lion@mail.ru

Cite this article as: Maergoiz L.S. Analytic continuation methods for multivalued functions of one variable and their application to the solution of algebraic equations, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 1, pp.  120-135

REFERENCES

1.   Borel E. Lecons sur les s$\acute{\mathrm{e}}$ries divergentes. In: Collection de monographies sur la th$\acute{\mathrm{e}}$orie des fonctions. Paris: Gaunter-Villars, 1901, 184 p.; 2nd ed. Paris: Gauthier-Villars, 1928, 260 p.

2.   Polya G. Untersuchungen $\ddot{\mathrm{u}}$ber L$\ddot{\mathrm{u}}$cken and Singularit$\ddot{\mathrm{a}}$ten von Potenzsrihen. Math. Zeits., 1929, vol. 29, no. 1, pp. 549–640. doi: 10.1007/BF01180553 

3.   Maergoiz L.S. Asymptotic characteristics of entire functions and their applications in mathematics and biophysics. 2nd ed. Dordrecht etc.: Kluwer Acad. Publ., 2003, 362 p. ISBN: 1-4020-1462-7/hbk .

4.   Bernstein V. Sulle proprieta caratteristiche delle indicatrici di crescenza delle transcendenti intere d’ordine finito. Memoire della classe di scien. fis. mat. e natur., 1936, vol. 6, pp. 131–189.

5.   Levin B.Ya. Lectures on entire functions. Providence: Amer. Math. Soc., 1996, 248 p. ISBN: 0-8218-0282-8 .

6.   Rockafellar R. Convex analysis. Princeton: Princeton University Press, 1970, 451 p. ISBN: 0691015864 .

7.   Maergoiz L.S. Many-sheeted versions of the Polya–Bernstein and Borel theorems for entire functions of order $\rho \neq 1$ and their appl. Dokl. Math., 2018, vol. 97, no. 1, pp. 42–46. doi: 10.1134/S1064562418010131 

8.   Maergoiz L.S. Ways of analytic continuation of many-valued function of one variable. Applications. Int. conf. “Complex analysis and its applications” dedicated to the 90th birth anniversary of I. P. Mityuk (Gelendzhik — Krasnodar, Russia, June 2 to 9, 2018), p. 75.

9.   Maergoiz L.S. Manysheeted variants of Polya–Bernstein and Borel theorems for entire functions of order $\rho \neq 1$ and some applications, Preprint, Krasnoyarsk: Siberian Federal University Publ., 2017. 28 p.

10.   Forster O. Riemannsche Fl$\ddot{\mathrm{a}}$chen. Berlin; Heidelberg; N Y: Springer-Verlag, 1977, 226 p. doi: 10.1007/978-3-642-66547-9 

11.   Levin B.Ya. Distribution of zeros of entire functions. Providence: Amer. Math. Soc., 1964, 523 p. ISBN: 978-0-8218-4505-9 . Original Russian text published in Levin B.Ya., Raspredelenie kornei tselykh funktsii, Moscow, Gostekhizdat Publ., 1956, 632 p.

12.   Maergoiz L.S. The structure of the indicator of an entire function of finite order and normal type. Siberian Math. J., 1975, vol. 16, no. 2, pp. 232–241. doi: 10.1007/BF00967507 

13.   Dzhrbashyan M.M. Integral’nye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti [Integral transformations and expansions of functions in a complex domain]. Moscow: Nauka Publ. 1966, 672 p.

14.   Riordan J. An introduction to combinatorial analysis. N Y: Jorn Wiley and Sons, 1958, 244 p.

15.   Mellin H.J. R$\acute{\mathrm{e}}$solution de l’$\acute{\mathrm{e}}$quation alg$\acute{\mathrm{e}}$brique g$\acute{\mathrm{e}}$n$\acute{\mathrm{e}}$rale $\grave{\mathrm{a}}$ l’aide de la fonction gamma. C. R. Acad. Sci., 1921, vol. 172, pp. 658–661.

16.   Sadykov T.M., Tsikh A.K. Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh [Hypergeometric and algebraic functions of many variables]. Moscow: Nauka Publ., 2014, 408 p. ISBN: 978-5-02-039082-9 .