V.I. Sumin. Controlled Volterra functional equations and the contraction mapping principle ... P. 262-278

Vol. 25, no. 1, 2019

Earlier the author proposed a rather general form of describing controlled initial-boundary value problems (CIBVPs) by means of Volterra functional equations
\[ z(t)=f\left(t,A[z](t),v(t)\right),\quad t\equiv \mbox{col}\{t^{1},\ldots,t^{n}\} \in \Pi\subset{\mathbb R}^n,\quad z\in L_p^m\left( \Pi \right), \]
where $\Pi$ is a given bounded set, $f(.,.,.):\Pi \times {\mathbb R}^l\times {\mathbb R}^s\rightarrow {\mathbb R}^m$, $v(.) \in {\cal D} \subset L_k^s$ is a control, and $A:L_p^m\left( \Pi \right)\rightarrow L_q^l\left( \Pi \right)$ is a linear operator with the Volterra property on some system $T$ of subsets of~$\Pi$ in the sense that for any $H\in T$ the restriction $\left. A \left[z \right] \right |_H$ does not depend on the values of $z| _{\Pi\backslash H}$; here $p,q,k\in \left[ 1,+\infty \right]$. This definition of the Volterra property is a multidimensional generalization of Tikhonov's known definition of a functional operator of Volterra type. Various CIBVPs for nonlinear evolution equations (parabolic, hyperbolic, integrodifferential, with delays, and others) are reduced by the inversion of the principal part to such functional equations. This description of CIBVPs is adequate for many problems of the theory of optimal control of distributed parameter systems. In particular, based on this description, the author found a scheme for deriving sufficient conditions for the stability (under a perturbation of the control) of the existence of global solutions to CIBVPs. The scheme employs the extension of local solutions (i.e., solutions on sets $H\in T$) of a functional equation along a finite chain of sets from the family $T$ ordered by inclusion. This process is realized with the use of a special theorem of the existence of local solutions based on the contraction mapping principle. In the case $p=q=k=\infty$, under natural assumptions, the possibility of applying this principle is provided by the fact that the right-hand side operator $\Phi_{v}[z\left(.\right)]\left(t\right)\equiv f\left(t,A[z](t),v(t)\right)$ satisfies the operator Lipschitz condition with a quasinilpotent ``Lipschitz operator.'' This allows to introduce, using well-known results from functional analysis, a norm in the space $L_{\infty}^m(H)$ equivalent to the usual norm in which the right-hand side operator is contractive.
In the general case $1\leq p,q,k\leq\infty$, which covers a much wider class of CIBVPs, the right-hand side operator may not satisfy such operator Lipschitz condition. In this case, the introduction of an equivalent norm of the space $L_p^m(H)$ required for the application of the contraction mapping principle is provided by the theorem on an equivalent norm proved in the paper. The theorem is based on the notion of  superequipotential quasinilpotency of a family of linear operators acting in a Banach space. A constructive general test is proved for the superequipotential quasinilpotency of a family of operators acting in a Banach ideal space of measurable functions. Sufficient conditions of superequipotential quasinilpotency, which are convenient for applications, are obtained in the case of Lebesgue spaces.

Keywords: controllable Volterra functional equation, contraction mapping principle, equipotentially quasi\-nilpotent family of operators, theorem on an equivalent norm.

Cite this article as: V.I. Sumin. Controlled Volterra functional equations and the contraction mapping principle, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2019, vol. 25, no. 1, pp. 262-278. 

REFERENCES

1.   Warga J. Optimal control of differential and functional equations. N Y; London: Acad. Press, 1972. 546 p. ISBN: 9781483259192 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami. Moscow: Nauka Publ., 1977, 624 p.

2.   Afanasyev A.P., Dikusar V.V., Milutin A.A., Chukanov S.A. Neobkhodimoe uslovie v optimal’nom upravlenii [Necessary condition in optimal control]. Moscow: Nauka Publ., 1990, 320 p. ISBN 5-02-006708-3.

3.   Sumin V.I. Optimizatsiya upravlyayemykh obobshchennykh vol’terrovykh sistem [Optimization of generalized controlled Volterra systems]. Dissertation, Cand. Sci. (Phys.-Math.), Gor’kii, 1975, 158 p.

4.   Sumin V.I. Volterra functional-operator equations in the theory of optimal control of distributed systems. Soviet Math. Dokl., 1989, vol. 39, no. 2, pp. 374–378.

5.   Tikhonov A.N. On functional equations of Volterra type and their applications to certain problems of mathematical physics. Byulleten’ MGU. Sektsiya A - Bull. Univ. Moscou Ser. Internat. Sect. A, 1938, vol. 1, no. 8, pp. 1–25 (in Russian).

6.   Sumin V.I. Equiquasinilpotency: definitions, conditions, examples of application. Vestnik Tambov. Univer. Ser. Estestvennye i Tekhnicheskie Nauki, 2010, vol. 15, no. 1, pp. 453–466 (in Russian).

7.   Plotnikov V.I., Sumin V.I. Optimization of distributed systems in Lebesgue space. Sib. Math. J., 1981, vol. 22, pp. 913–929. doi: 10.1007/BF00968060 

8.   Sumin V.I. The features of gradient methods for distributed optimal-control problems. USSR Comp. Math. Math. Phys., 1990, vol. 30, pp. 1–15. doi: 10.1016/0041-5553(90)90002-A 

9.   Sumin V.I. Sufficient conditions for stable existence of solutions to global problems in control theory. Differ. Eq., 1990, vol. 26, no. 12, pp. 1579–1590.

10.   Sumin V.I. Funktsional’nye volterrovy uravneniya v teorii optimal’nogo upravleniya raspredelennymi sistemami [Functional Volterra equations in the theory of optimal control of distributed systems]. Nizhnii Novgorod: Nizhnii Novgorod State Univer. Publ., 1992, 112 p.

11.   Sumin V.I. The problem of sustainability of existence global solutions of controlled boundary value problems and Volterra functional equations. Vestnik Nizhegorod. Univer. Matematika, 2003, no. 1, pp. 91–107 (in Russian).

12.   Lisachenko I.V., Sumin V.I. Nonlinear Goursat–Darboux control problem: Conditions for the preservation of global solvability. Differ. Eq., 2011, vol. 47, no. 6, pp. 863–876. doi: 10.1134/S0012266111060127 

13.   Korzhavina M.S., Sumin V.I. On the initial-boundary value problem for semilinear parabolic equation with controlled principal part. Vestnik Tambov. Univer. Ser. Estestvennye i Tekhnicheskie Nauki, 2018, vol. 23, no. 122, pp. 317–324 (in Russian). doi: 10.20310/1810-0198-2018-23-122-317-324 .

14.   Chernov A.V. Vol’terrovy operatornyye uravneniya i ikh primeneniye v teorii optimizatsii giperbolicheskikh sistem [Volterra operator equations and their application in the theory of optimization of hyperbolic systems]. Dissertation, Cand. Sci. (Phys.-Math.), Nizhny Novgorod, 2000, 177 p.

15.   Chernov A.V. On the convergence of the conditional gradient method in distributed optimization problems. Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1510–1523. doi: 10.1134/S0965542511090077 

16.   Chernov A.V. Sufficient conditions for the controllability of nonlinear distributed systems. Comput. Math. Math. Phys., 2012, vol. 52, no. 8, pp. 1115–1127. doi: 10.1134/S0965542512050053 

17.   Chernov A.V. Smooth finite-dimensional approximations of distributed optimization problems via control discretization. Comput. Math. Math. Phys., 2013, vol. 53, no. 12, pp. 1839–1852. doi: 10.1134/S096554251312004X 

18.   Chernov A.V. On Volterra functional operator games on a given set. Automat. Remote Control, 2014, vol. 75, no. 4, pp. 787–803. doi: 10.1134/S0005117914040195 

19.   Chernov A.V. Preservation of the solvability of a semilinear global electric circuit equation. Comput. Math. Math. Physics., 2018, vol. 58, no. 12, pp. 2018–2030. doi: 10.1134/S0965542518120096 

20.   Sumin V.I., Chernov A.V. Volterra functional-operator equations in the theory of optimization of distributed systems. Systems Dinamics and Control Processes (SDCP’2014), Proc. Int. Conf. dedicated to the 90th Anniversary of the birth of Acad. N.N.Krasovskii. Ekaterinburg, 2014, Ekaterinburg, 2015, pp. 293–300 (in Russian).

21.   Sumin V. Volterra functional-operator equations in the theory of optimal control of distributed systems. IFAC PapersOnLine, 2018, vol. 51, no. 32, pp. 759–764. doi: 10.1016/j.ifacol.2018.11.454 

22.   Sumin V.I. Volterra functional-operator equations and distributed optimization problems. Vestnik Tambov. Univer. Ser. Estestvennye i Tekhnicheskie Nauki, 2018, vol. 23, no. 124, pp. 745–756 (in Russian). doi: 10.20310/1810-0198-2018-23-124-745-756 

23.   Sumin V.I. Volterra functional equations and optimization of distributed systems. Optimal control and differential games, Materials Internat. Conf. dedicated to the 110th anniversary of the Lev Semenovich Pontryagin (Moscow, 2018), Moscow, 2018, pp. 266–268 (in Russian).

24.   Lions J.L. Controle des systemes distribues singuliers. Paris: Gauthier-Villars, 1983, 448 p. ISBN: 2040155392 . Translated to Russian under the title Lions Zh.-L. Upravlenie singulyarnymi raspredelennymi sistemami, Moscow: Nauka Publ., 1987, 368 p.

25.   Sumin V.I. On the singularity problem of distributed control systems. I. Vestnik Nizhegorod. Univer. Ser. Matem. Modelirovanie i Optimal. Uprav., 1999, no. 2(21), pp. 145–155 (in Russian).

26.   Sumin V.I. On the singularity problem of distributed control systems. II. Vestnik Nizhegorod. Univer. Ser. Matem. Modelirovanie i Optimal. Uprav., 2001, no. 1(23), pp. 198–204 (in Russian).

27.   Sumin V.I. On the singularity problem of distributed control systems. III. Vestnik Nizhegorod. Univer. Ser. Matem. Modelirovanie i Optimal. Uprav., 2002, no. 1(25), pp. 164–174 (in Russian).

28.   Sumin V.I. On the singularity problem of distributed control systems. IV. Vestnik Nizhegorod. Univer. Ser. Matem. Modelirovanie i Optimal. Uprav., 2004, no. 1(27), pp. 185–193 (in Russian).

29.   Sumin V.I. Controlled functional Volterra equations in Lebesgue space. Vestnik Nizhegorod. Univer. Ser. Matem. Modelirovanie i Optimal. Uprav., 1998, no. 2(19), pp. 138–151 (in Russian).

30.   Sumin V.I. Conditions of the existence-stability of global solutions of boundary-value problems for non-linear parabolic equations. Vestnik Tambov. Univer. Ser. Estestvennye i Tekhnicheskie Nauki, 2000, vol. 5, no. 4, pp. 493–495 (in Russian).

31.   Filippov A.F. Differential equations with discontinuous righthand sides. Dordrecht, Kluwer, 1988, 304 p. ISBN: 90-277-2699-X. Original Russian text published in Filippov A.F. Differentsial’nye uravneniya s razryvnoi pravoi chast’yu. Moscow, Nauka Publ., 1985, 224 p.

32.   Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal Control. N Y: Plenum Press, 1987, 309 p. ISBN: 0-306-10996-4 . Original Russian text published in Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal’noe upravlenie. Moscow: Nauka Publ., 1979, 432 p.

33.   Sumin V.I. On controlled functional Volterra equations in Lebesgue spaces. Deposited in VINITI 03.09.98 no. 2742–В98, 96 p.

34.   Lisachenko I.V., Sumin V.I. The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives. Vestnik Udmurt. Univer. Ser. Matematika. Mekhanika. Komp’yuternye Nauki, 2011, vol. 21, no. 2, pp. 52–67 (in Russian). doi: 10.20537/vm110204 

35.   Kantorovich L.V., Akilov G.P. Functional analysis. Oxford: Pergamon Press, 1982, 604 p. ISBN: 9781483138251 . Original Russian text published in Kantorovich L.V., Akilov G.P. Funktsional’nyi analiz, Moscow, Nauka Publ., 1977, 741 p.

36.   Krasnosel’skii M.A. Positive solutions of operator equations. Groningen: P. Noordhoff Ltd., 1964, 381 p. Original Russian text published in Krasnosel’skii M.A. Polozhitel’nye resheniya operatornykh uravnenii, Moscow: GIFML Publ., 1962, 396 p.

37.   Sumin V.I. On Functional Volterra Equations. Russian Math. (Iz. VUZ), 1995, vol. 39, no. 9, pp. 65–75.

38.   Rota G.-C., Strang G. A note on the joint spectral radius. Indag. Math., 1960, vol. 22, pp. 379–381.

39.   Shulman V.S., Turovskii Y.V. Joint spectral radius, operator semigroups, and a problem of W. Wojtynski. J. Func. Anal., 2000, vol. 177, iss. 2, pp. 383–441.

40.   Shulman V.S. Invariant subspaces and linear operator equations. Abstract of Dissertation, Doct. Sci. (Phys.–Math.), Moscow, 2009, 23 p. (in Russian).

41.   Sumin V.I., Chernov A.V. Operators in spaces of measurable functions: the Volterra property and quasinilpotency. Differ. Eq., 1998, vol. 34, no. 10, pp. 1403–1411.

42.   Korzhavina M.S., Sumin V.I. On the boundary value problem for a nonlinear parabolic equation with control in the initial condition. Proc. Int. Conf. “Modern Methods in Boundary Value Problems Theory. Pontryagin Readings–XXIX”. Moscow: MAKS-Press, 2018, pp. 129–131 (in Russian). ISBN 978-5-9273-2453-8 .

43.   Krasnosel’skii M.A., Zabreyko P.P., Pustylnik E.I. et al. Integral operators in spaces of summable functions. Groningen: Noordhoff, 1976, 536 p. ISBN: 978-94-010-1544-8 . Original Russian text published in Krasnosel’skii M.A., Zabreiko P.P., Pustyl’nik E.I., Sobolevskii P.E. Integral’nye operatory v prostranstvakh summiruemykh funktsii. Moscow: Nauka Publ., 1966, 500 p.

Received December 15, 2018

Revised February 3, 2019

Accepted February 5, 2019

Vladimir Iosifovich Sumin, Dr. Phys.-Math. Sci., Prof., Nizhny Novgorod State University named after N.I. Lobachevsky, Nizhny Novgorod, 603950 Russia, e-mail: v_sumin@mail.ru