Kh.A. Khachatryan, H.S. Petrosyan, M.H. Avetisyan. Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$

We study a class of nonlinear multidimensional integral equations of convolution type. This class of equations is directly applied in the $p$-adic theory of open-closed strings. We prove the existence of an $n$-parametric family of nontrivial continuous bounded solutions and establish certain properties of the constructed solutions: monotonicity in each argument, limit relations, and integral asymptotics. The solutions are used to study a nonlinear problem for the multidimensional heat equation. At the end of the paper we give example of such equations, which are of independent theoretical and practical interest.

Keywords: nontrivial solution, monotonicity, $p$-adic theory, limit, successive approximations.

The paper was received by the Editorial Office on June 26, 2018.

Funding Agency: This work was supported by the Science Committee of the Ministry of Education and Science of Armenia (project no. SCS 16YR-1A002).

Khachatur Aghavardovich Khachatryan, Dr. Phys.-Math. Sci., Institute of Mathematics, National Academy of Sciences of Armenia, 0019, Yerevan, Republic of Armenia, e-mail: Khach82@rambler.ru, Khach82@mail.ru

Haykanush Samvelovna Petrosyan, Cand. Sci. (Phys.-Math.), Armenian National Agrarian University, 0009, Yerevan, Republic of Armenia, e-mail: Haykuhi25@mail.ru

Metaksya Hovnanovna Avetisyan, graduate student, Yerevan State University, 0025, Yerevan, Republic of Armenia, e-mail: avetisyan.metaqsya@mail.ru

REFERENCES

1.   Volovich I.V. p-adic string. Classical Quantum Gravity, 1987, vol. 4, no. 4, pp. L83–L87. doi: 10.1088/0264-9381/4/4/003 .

2.   Vladimirov V.S., Volovich Ya.I. Nonlinear Dynamics Equation in p-Adic String Theory. Theoret. Math. Phys., 2004, vol. 138, no. 3, pp. 297–309. doi: 10.1023/B:TAMP.0000018447.02723.29 .

3.   Vladimirov V.S. Nonlinear equations for p-adic open, closed, and open-closed strings. Theoret. Math. Phys., 2006, vol. 149, no. 3, pp. 1604–1616. doi: 10.1007/s11232-006-0144-z .

4.   Vladimirov V.S. Solutions of p-adic string equations. Theoret. Math. Phys., 2011, vol. 167, no. 2, pp. 539–546. doi: 10.1007/s11232-011-0040-z .

5.   Vladimirov V.S. The equation of the p-adic open string for the scalar tachyon field. Izv. Math., 2005, vol. 69, no. 3, pp. 487–512. doi: 10.1070/IM2005v069n03ABEH000536 .

6.   Joukovskaya L.V. Theoret. Math. Phys., 2006, vol. 146, no. 3, pp. 335–342.
doi: 10.1007/s11232-006-0043-3 .

7.   Khachatryan Kh.A. On the solvability of certain classes of non-linear integral equations in p-adic string theory. Izv. Math., 2018, vol. 82, no. 2, pp. 407–427. doi: 10.1070/IM8580 .

8.   Khachatryan Kh.A. On the solvability of a boundary-value problem in p-adic string theory. Tr. Mosk. Mat. Obs., 2018, vol. 79, no. 1, pp. 117–132 (in Russian).

9.   Khachatryan Kh.A., Avetisyan M.H. On solvability of one infinite nonlinear system of algebraic equations with Teoplitz-Hankel matrices. Proc. Yerevan State Univ., 2017, vol. 51, no. 2, pp. 158–167.

10.   Khachatryan Kh.A., Terdzhyan Ts.E., Avetisyan M.O. One-parameter family of bounded solutions for a system of non-linear integral equations on the whole line. J. Contemporary Math. Analysis (Armenian Academy of Sciences), 2018, vol. 53, no. 4, pp. 201–212.

11.   Fikhtengol’ts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya. T. 2 [Course of differential and integral calculus. Vol. 2]. Moscow: Fizmatlit. Publ., 1966, 800 p. ISBN(10th ed.): 978-5-8114-0674-6 .

12.   Gevorkyan G.G., Engibaryan N.B. New theorems for the renewal integral equation. J. Contemp. Math. Anal., Armen. Acad. Sci., 1997, vol. 32, no. 1, pp. 2–16.

13.   Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. Vol. 1,2. Mineola; N Y: Dover Publ., 1999, 288 p. ISBN: 0486406830 . Original Russian text (5th ed.) published in Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza. Moscow: Nauka Publ., 1981, 544 p.

14.   Gel’fand I.M., Shilov G.E. Generalized Functions, Vol. 2: Spaces of Fundamental and Generalized Functions. N Y: Academic Press, 1968, 261 p., ISBN: 978-0122795022 . Original Russian text published in Gel’fand I.M., Shilov G.E. Obobshchennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobshchennykh funktsii, Moscow: Fizmatlit. Publ., 1958, 310 p.

15.   Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki [Equations of mathematical physics]. Moscow: Nauka Publ., 1977, 735 p.

16.   Khachatryan A.Kh., Khachatryan Kh.A. Solavability of a class of nonlinear pseudo-differential equations in $\mathbb {R}^n$. p-Adic Numbers, Ultrametric Analysis and Applications, 2018, vol. 10, no. 2, pp. 90–99. doi: 10.1134/S2070046618020024 .