A. Makhnev and M. Samoilenko found intersection arrays of antipodal distance-regular graphs of diameter 3 and degree at most 1000 in which $\lambda=\mu$ and the neighborhoods of vertices are strongly regular. Automorphisms of distance-regular graphs in which the neighborhoods of vertices are strongly regular with second eigenvalue 3 except for graphs with intersection arrays $\{196,156,1;1,39,196\}$ and $\{205,136,1;1,68,205\}$ were found earlier. We find possible prime orders of elements in the automorphism group of a distance-regular graph with intersection array $\{196,156,1;1,39,196\}$ as well as their fixed-point subgraphs. It is proved that the automorphism group of this graph acts intransitively on the vertex set.
Keywords: distance-regular graph, automorphism
The paper was received by the Editorial Office on May 21, 2018.
Al’bina Aniuarovna Tokbaeva, Cand. Sci. (Phys.-Math.), Kabardino-Balkarian State University named after H.M.Berbekov, Nal’chik, 360004 Russia, e-mail: tok2506@mail.ru
REFERENCES
1. Makhnev A.A., Samoylenko M.S. On distance-regular covers of cliques with strongly regular neighbourhoods of vertices. Sovremennye problemy matematiki (Modern Problems in Mathematics), Proc. of the 46-th Int. Youth School-Conf. (Ekaterinburg, Russia, 2015), pp. 13–18 (in Russian).
2. Efimov K.S., Makhnev A.A. On automorphisms of a distance-regular graph with intersection array {25,16,1;1,8,25}. Ural Math. J., 2017, vol. 3, no. 1, pp. 27–32. doi: 10.15826/umj.2017.1.001 .
3. Makhnev A.A., Shermetova M.Kh. On automorphisms of a distance-regular graph with intersection array {96,76,1;1,19,96}. Sib. Elektron. Mat. Izv., 2018, vol. 15, pp. 167–174 (in Russian). doi: 10.17377/semi.2018.15.016 .
4. Ageev P.S., Makhnev A.A. Automorphisms of a graph with intersection array {99,84,1;1,14,99}. Dokl. Math., 2014, vol. 90, no. 2, pp. 525–528. doi: 10.1134/S1064562414060015 .
5. Efimov K.S., Makhnev A.A. Automorphisms of a distance-regular graph with intersection array {100,66,1;1,33,100}. Sib. Elektron. Mat. Izv., 2015, vol. 12, pp. 795–801. doi: 10.17377/semi.2015.12.065 .
6. Kagazezheva A.M. Automorphisms of a distance-regular graph with intersection array {169,126,1; 1,42,169}. Sib. Elektron. Mat. Izv., 2015, vol. 12, pp. 318–327 (in Russian). doi: 10.17377/semi.2015.12.026 .
7. Belousov I.N., Makhnev A.A. On automorphisms of a distance-regular graph with intersection array {176,150,1;1,25,176}. Sib. Elektron. Mat. Izv., 2016, vol. 13, pp. 754–761 (in Russian). doi: 10.17377/semi.2016.13.061 .
8. Makhnev A.A., Paduchikh D.V. Distance regular graphs in which local subgraphs are strongly regular graphs with the second eigenvalue at most 3. Dokl. Math., 2015, vol. 92, no. 2, pp. 568–571. doi: 10.1134/S1064562415050191 .
9. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin, Heidelberg, N Y: Springer-Verlag, 1989, 495 p. ISBN: 0387506195 .
10. Cameron P. Permutation groups. Cambridge: Cambridge Univ. Press, 1999, 220 p. ISBN: 0-521-65302-9 .
11. Gavrilyuk A.L., Makhnev A.A. On automorphisms of distance-regular graphs with intersection array {56,45,1;1,9,56}. Dokl. Math., 2010, vol. 81, no. 3, pp. 439–442. doi: 10.1134/S1064562410030282 .
12. Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv., 2009, vol. 6, pp. 1–12.
13. Godsil C.D., Hensel A.D. Distance-regular covers of the complete graphs. J. Comb. Theory, ser. B, 1992, vol. 56, no. 2, pp. 205–238. doi: 10.1016/0095-8956(92)90019-T .