E. V. Berestova. Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$

Let $\mathfrak{M}_{\sigma,n}^p$, $p>0$, be a set of entire functions~$f$ of~$n$ complex variables with exponential type $\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_k>0$, such that their restrictions to~$\mathbb{R}^n$ belong to $L^p(\mathbb{R}^n)$. In 1937 Plancherel and Polya showed that $\sum_{k \in \mathbb{Z}^n}|f(k)|^p \le c_p(\sigma, n) \|f\|^p_{L^p(\mathbb{R}^n)}$ for $f\in \mathfrak{M}_{\sigma,n}^p$, where $c_p(\sigma, n)$ is a finite constant. We study the Plancherel-Polya inequality for~$p=2$. If $0<\sigma_k\le \pi$, then, by the Whittaker-Kotelnikov-Shannon theorem and its generalization to the multidimensional case established by Plancherel and Polya, we have $c_2(\sigma, n)=1$ and any function $f\in \mathfrak{M}_{\sigma,n}^2$ is extremal. In the general case, we prove that $c_2(\sigma, n)=\prod_{k = 1}^{n}\left\lceil \sigma_k/\pi \right\rceil $ and describe the class of extremal functions. We also write the dual problem $\big|\sum_{k \in \mathbb{Z}^n} (g\ast g)(k)\big| \le d_2(\sigma,n) \|g\|_2^2$, $g \in  L^2\left(\Omega\right)$, prove that $c_2(\sigma,n)=d_2(\sigma,n)$, and describe the class of extremal functions.

Keywords: Plancherel-Polya inequality, Paley-Wiener space, entire function of exponential type, Fourier transform.

The paper was received by the Editorial Office on June 23, 2018.

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).

Ekaterina Vladimirovna Berestova, Ural Federal University, Yekaterinburg, 620990 Russia,
e-mail: e.v.berestova@urfu.ru

REFERENCES

1.   Nikol’skii S.M. Approximation of Functions of Several Variables and Embedding Theorems. Berlin; N Y: Springer-Verlag, 1975, 420 p. doi: 10.1007/978-3-642-65711-5 . Original Russian text (2nd ed.) published in Nikol’skii S.M. Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya. Moscow: Nauka Publ., 1977, 456 p.

2.   Gel’fand I.M., Shilov G.E. Generalized functions: Spaces of fundamental and generalized functions. N Y; London: Acad. Press, 1968, 261 p. ISBN: 9781483262307 .

3.   Levin B.Ya. Lectures on entire functions. Providence: American Math. Soc., 1996, 248 p. ISBN: 0-8218-0282-8 .

4.   Plancherel M., P$\acute{\mathrm{o}}$lya G. Fonctions enti$\grave{\mathrm{e}}$res et int$\acute{\mathrm{e}}$grales de Fourier multiples. Commentarii Mathematici Helvetici, 1937, vol. 10, no. 1, pp. 110–163. doi: 10.1007/BF01214286 .

5.   Boas R.P., Jr. Entire functions bounded on a line. Duke Math. J., 1940, no. 6, pp. 148–169. doi: 10.1215/S0012-7094-40-00613-5 .

6.   Donoho D.L., Logan B.F. Signal recovery and the large sieve. SIAM J. Appl. Math., 1992, vol. 52, no. 2, pp. 577–591. doi: 10.1137/0152031 .

7.   Norvidas S. Concentration of $L^p$-bandlimited functions on discrete sets. Lithuanian Math. J., 2014, vol. 54, no. 4, pp. 471–481. doi: 10.1007/s10986-014-9258-4 .

8.   Nikol’skii S.M. Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of several variables. In: Azarin V.S. et al (eds.), Thirteen papers on functions of real and complex variables. Providence: American Math. Soc., 1969, 278 p. (pp. 1–38.) ISBN: 978-1-4704-3291-1 .

9.   Lubinsky D.S. On sharp constants in Marcinkiewicz–Zygmund and Plancherel–P$\acute{\mathrm{o}}$lya inequalities. Proc. Amer. Math. Soc., 2014, vol. 142, no. 10, pp. 3575–3584. doi: 10.1090/S0002-9939-2014-12270-2 .

10.   P$\acute{\mathrm{o}}$lya G. $\ddot{\mathrm{U}}$ber ganze Funktionen vom Minimaltypus der Ordnung 1, Aufgabe 105. Jahresbericht der Deutschen Mathematiker Vereinigung, 1931, vol. 40, pp. 9–12.

11.   Berestova E.V. Plancherel – P$\acute{\mathrm{o}}$lya inequality for entire functions of exponential type in $L^2(\mathbb{R})$. Analysis Math., 2018, vol. 44, no. 1, pp. 43–50. doi: 10.1007/s10476-018-0104-5 .

12.   Stein E., Weiss G. Introduction to Fourier analysis on Euclidean spaces. Princeton, New Jersey: Princeton University Press, 1971, 297 p. ISBN: 9780691080789 .

13.   Hardy G.H., Littlewood J.E., P$\acute{\mathrm{o}}$lya G. Inequalities. Cambridge: Cambridge University Press, 1934, 340 p. ISBN(2nd ed.): 0-521-05206-8 .

14.   Folland G.B. A Course in Abstract Harmonic Analysis. London; Tokyo: CRC Press, 1995, 305 p. ISBN: 0849384907 .