The coefficients of the Hilbert-Poincare series $H_A(t)=\sum_{k=0}^{\infty}a_kt^k$ of a graded associative algebra $A=\langle\langle x,y|x^m,y^n\rangle\rangle$ with unit are calculated (Theorems 1 and 2). There are no other constraints on the algebra. The problem is the combinatorial search for compact formulas (and asymptotics) for the number of associative words of fixed length in the alphabet $\{x,y\}$ not containing the subwords $x^m$ and $y^n$. Working with recurrence relations, generating functions, and combinatorial sums, we use operations with power series (of one variable) and elements of the theory of residues for complex variables. These methods supplement the Golod-Shafarevich theorem, which is inapplicable for $d=2$ and $m,n\leq9$. In connection with Aleshin, Grigorchuk, and Gupta groups, we pay a special attention to the small values $m,n\leq4$. An asymptotic expansion of the coefficients $a_k$ is found, and $a_k$ are compared with the coefficients of the series $\sum_{k=0}^{\infty}c_kt^k$, which is the inverse of the polynomial $1-2t+t^m+t^n$. We also consider the cases of negative coefficients $c_k$ and inequalities $c_k>a_k$, which are excluded by the conditions of the Golod-Shafarevich theorem. However, additional relations sufficient for obtaining infinite-dimensional nilalgebras cannot be found yet because the obtained formulas are rather cumbersome.
Keywords: associative nilalgebra, Hilbert-Poincare series.
The paper was received by the Editorial Office on March 28, 2018.
Funding Agency:
Russian Foundation for Basic Research (Grant Number 15-01-04987 а).
Anatolii Ilich Sozutov, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sozutov_ai@mail.ru.
Georgii Petrovich Egorychev, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: gegorych@mail.ru.
Inna Olegovna Aleksandrova, Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: aio40@mail.ru.
REFERENCES
1. Ufnarovskii V.A. Combinatorial and asymptotic methods in algebra. Algebra VI. Encycl. Math. Sci., 1995, vol. 57, pp. 1–196.
2. Golod E.S., Shafarevich I.R. On the class field tower. Izv. Akad. Nauk SSSR, Ser. Mat., 1964, vol. 28, pp. 261–272 (in Russian).
3. Golod E.S. On nil-algebras and finitely approximable p-groups. Am. Math. Soc., Translat., 1965, vol. 48, no. 2, pp. 103–106.
4. Herstein I. Noncommutative rings. Washington: Mathematical Association of America, 1968, 202 p. doi: 10.5948/UPO9781614440154 . Translated to Russian under the title Nekommutativnye kol’tsa. Moscow, Mir Publ., 1982, 190 p.
5. Kargapolov M.I., Merzljakov Ju.I. Fundamentals of the theory of groups. Transl. from the 2nd Russian ed. Ser. Graduate Texts in Mathematics, vol. 62. N Y; Heidelberg; Berlin: Springer-Verlag. 1979, 203 p. ISBN: 978-1-4612-9966-0 . Original Russian text (3rd ed.) published in Kargapolov M.I., Merzlyakov Yu.I. Osnovy teorii grupp, Moscow, Nauka Publ., 1982, 288 p.
6. Aleshin S.V. Finite automata and Burnside’s problem for periodic groups.Math. Notes, 1972, vol. 11, no. 3, pp. 199–203. doi: 10.1007/BF01098526 .
7. Grigorchuk R.I. Burnside problem on periodic groups. Funct. Anal. Appl., 1980, vol. 14, no. 1, pp. 41–43. doi: 10.1007/BF01078416 .
8. Gupta N., Sidki S. Some infinite p-groups. Algebra i Logika, 1983, vol. 22, no 5, pp. 584–589.
9. Egorychev G.P. Integral representation and the computation of combinatorial sums. Ser. Translations of Mathematical Monographs, vol. 59, Providence: American Mathematical Society, 1984, 286 p. ISBN: 0821845128 . Original Russian text piblished in Egorychev G.P. Integral’noe predstavlenie i vychislenie kombinatornykh summ, Novosibirsk: Nauka Publ., 1979, 286 p.
10. Kourovskaya tetrad’: Nereshennye voprosy teorii grupp [The Kourovka Notebook: Unsolved Problems of Group Theory]. Edited by V. D. Mazurov and E. I. Khukhro. 15th ed., IM RAN, Novosibirsk, 2002, 172 p. ISBN: 5-94356-058-0 .
11. Shunkov V.P. On a certain class of p-groups. Algebra and Logic, 1970, vol. 9, pp. 291–297.
12. Sozutov A.I., Aleksandrova I.O. On some properties associated groups of associative nil algebras. Abstr. Int. Conf. “Algebra i Logika: Teoriya i Prilozheniya” [Algebra and Logic: Theory and Applications] Krasnoyarsk, 2013, pp. 12–14 (in Russian).
13. Sozutov A.I., Alexandrova I.O. On some properties of adjoint groups of associative nil algebras. Zh. Sib. Fed. Univ. Mat. Fiz., 2017, vol. 10, no. 4, pp. 503–508.
14. Lando S.K. Lectures on generating functions. Ser. Student Mathematical Library, vol. 23, Providence: AMS, 2003, 148 p. ISBN: 978-0-8218-3481-7 . Original Russian text (3rd ed.) published in Lando S.K. Lektsii o proizvodyashchikh funktsiyakh, Moscow: MTsNMO Publ., 2007, 144 p.
15. Shabat B.V. Vvedenie v kompleksnyi analiz. Ch. 1. Funktsii odnogo peremennogo: ucheb. [Introduction to Complex Analysis. Part I: Functions of one variable. Textbook]. Moscow, Nauka Publ., 1985, 336 p. ISBN(5th ed.): 978-5-9710-1358-7 .