N.V. Munts, S.S. Kumkov. On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline ... P. 200-214

We consider time-optimal differential games with a lifeline. In such games, as usual, there is a terminal set to which the first player tries to guide the system as fast as possible, and there is also a set, called a lifeline, such that the second player wins when the system attains this set. The payoff is the result of applying Kruzhkov’s change to the time when the system reaches the terminal set. We also consider Hamilton–Jacobi equations corresponding to such games. The existence of a minimax solution of a boundary value problem for a Hamilton–Jacobi type equation is proved. For this we introduce certain strong assumptions on the dynamics of the game near the boundary of the game domain. More exactly, the first and second players can direct the motion of the system to the terminal set and the lifeline, respectively, if the system is near the corresponding set. Under these assumptions, the value function is continuous in the game domain. The coincidence of the value function and the minimax solution of the boundary value problem is proved under the same assumptions.

Keywords: time-optimal differential games with a lifeline, value function, Hamilton–Jacobi equations, minimax solution.

The paper was received by the Editorial Office on February 28, 2018.

Funding Agency:

Russian Foundation for Basic Research (Grant Number 18-01-00410).

Natal’ya Vladimirovna Munts, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia,
e-mail: natalymunts@gmail.com.

Sergei Sergeevich Kumkov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia,
e-mail: sskumk@gmail.com.

REFERENCES

1.   Isaacs R. Differential games. N Y, John Wiley and Sons, 1965, 384 p. ISBN: 0471428604 . Translated to Russian under the title Differentsial’nye igry. Moscow, Mir Publ., 1967, 480 p.

2.   Petrosjan L. A. A family of differential survival games in the space $\mathbb R^n$. Soviet Math. Dokl., 1965, no. 6, pp. 377–380.

3.   Petrosyan L.A. Dispersion surfaces in one family of pursuit games. Proc. Acad. Sci. Armenian SSR, 1966, vol. 43, no. 4, pp. 193–197.

4.   Dutkevich Yu.G., Petrosyan L.A. Games with a “life-line”. The case of $l$-capture. SIAM J. Control, 1972, vol. 10, no. 1, pp. 40–47. doi: 10.1137/0310004 .

5.   Petrosyan L.A. Differential games of pursuit. Singapore: World Scientific, 1993, 325 p. ISBN: 9810209797 . Original Russian text published in Petrosyan L.A., Differentsial’nye igry presledovaniya, Leningrad: Publ. Leningr. Gos. Univ., 1977, 222 p.

6.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.

7.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. N Y: Springer-Verlag, 1988, 517 p.

8.   Cardaliaguet P., Quincampoix M., Saint-Pierre P. Some algorithms for differential games with two players and one target. RAIRO – Mod$\acute{e}$lisation math$\acute{e}$matique et analyse num$\acute{e}$rique, 1994, vol. 28, no. 4, pp. 441–461. doi: 10.1051/m2an/1994280404411 .

9.   Cardaliaguet P., Quincampoix M., Saint-Pierre P. Set-valued numerical analysis for optimal control and differential games. In: Bardi M., Raghavan T.E.S., Parthasarathy T. (eds): Stochastic and Differential Games. Annals Internat. Soc. Dynamic Games. Boston: Birkh$\ddot{\mathrm{a}}$auser, 1999, vol. 4, pp. 177–247. doi: 10.1007/978-1-4612-1592-9_4 .

10.   Cardaliaguet P., Quincampoix M., Saint-Pierre P. Differential games through viability theory: Old and recent results. In: Jјrgensen S., Quincampoix M., Vincent T.L. (eds): Advances in Dynamic Game Theory. Annals Internat. Soc. Dynamic Games, Boston: Birkh$\ddot{\mathrm{a}}$auser, 2007, vol. 9, pp. 3–35. doi: 10.1007/978-0-8176-4553-3_1 .

11.   Subbotin A.I. Generalized solutions of First-Order PDEs. The Dynamical optimization perspective. Basel, Birkh$\ddot{\mathrm{a}}$auser, 1995, 314 p. doi: 10.1007/978-1-4612-0847-1 . Translated to Russian under the title Obobshchennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, Moscow, Izhevsk: Inst. Komp’yuter. Issled. Publ., 2003, 336 p.

12.   Munts N.V., Kumkov S.S. Existence of value function in time-optimal game with life line [e-resource]. In: Makhnev A.A., Pravdin S.F. (eds.): Proc. 47th Internat. Youth School-Conf. “Modern Problems in Mathematics and its Applications”, Yekaterinburg, 2016, pp. 94–99 (in Russian). Available at: http://ceur-ws.org/Vol-1662/opt6.pdf .