A.A. Makhnev, D.V. Paduchikh. Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176} ... P. 173-184

A distance-regular graph $\Gamma$ with intersection array $\{176,135,32,1;1,16,135,176\}$ is an $AT4$-graph. Its antipodal quotient $\bar\Gamma$ is a strongly regular graph with parameters $(672,176$, $40,48)$. In both graphs the neighborhoods of vertices are strongly regular with parameters $(176,40,12,8)$. We study the automorphisms of these graphs. In particular, the graph $\Gamma$ is not arc-transitive. If $G=\mathrm{Aut}\,(\Gamma)$ contains an element of order 11, acts transitively on the vertex set of $\Gamma$, and $S(G)$ fixes each antipodal class, then the full preimage of the group $(G/S(G))'$ is an extension of a group of order 3 by $M_{22}$ or $U_6(2)$. We describe automorphism groups of strongly regular graphs with parameters $(176,40,12,8)$ and $(672,176,40,48)$ in the vertex-symmetric case.

Keywords: strongly regular graph, distance-regular graph, graph automorphism.

The paper was received by the Editorial Office on Dezember 26, 2017.

Funding Agency:

Russian Science Foundation ((Grant Number: 14-11-00061-П). 

A.A.Makhnev. Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia,
e-mail: makhnev@imm.uran.ru

D.V.Paduchikh. Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia,
e-mail: dpaduchikh@gmail.com

REFERENCES

1.   Makhnev A.A., Paduchikh D.V. On strongly regular graphs with eigenvalue μ and their extensions. Proc. Steklov Inst. Math. (Suppl.), 2014, vol. 285, suppl. 1, pp. 128–135. doi: 10.1134/S0081543814050137 .

2.   Gutnova A.K., Makhnev A.A. On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for GQ(3,3). Tr. Inst. Mat., 2010, vol. 18, no. 1, pp. 28–35 (in Russian).

3.   Cameron P.J. Permutation Groups. London Math. Soc. Student Texts 45. Cambridge: Cambridge Univ. Press. 1999, 232 p. ISBN: 0-521-65302-9 .

4.   Brouwer A.E., Haemers W.H. The Gewirtz graph: an exercize in the theory of graph spectra. Europ. J. Comb., 1993, vol. 14, pp. 397–407. doi: 10.1006/eujc.1993.1044 .

5.   Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. Discrete Math., 2011, vol. 311, no. 2-3, pp. 132–144. doi: 10.1016/j.disc.2010.10.005 .

6.   Gavrilyuk A. L., Makhnev A.A. On automorphisms of a distance-regular graph with intersection array {56,45,1;1,9,56}. Dokl. Math., 2010, vol. 81, no. 3, pp. 439–442. doi: 10.1134/S1064562410030282 .

7.   Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. Siberian Electr. Math. Reports., 2009, vol. 6, pp. 1–12.

8.   The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.8.10, 2018. Available at https://www.gap-system.org .