The problem of function recovery is investigated, where instead of function values at certain points of the segment, integrally averaged values over intervals are known. Yu. N. Subbotin proposed to call such a problem as interpolation in the mean. Using the relationship between integro quadratic splines that solve the specified problem and interpolation cubic splines, the issue of choosing end conditions is considered in the case of the absence of additional information at the ends of the segment that could be used as end conditions. When constructing an interpolation in the mean spline through B-splines, formulas are proposed for explicitly specifying the expansion coefficients at the ends of the segment, which ensure the preservation of the highest third order of approximation.
Keywords: integro spline, interpolation in the mean, B-splines, end conditions, cubic splines
Received April 30, 2025
Revised September 26, 2025
Accepted October 6, 2025
Funding Agency: The work of first author was carried out under a state contract of the Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences (project no. FWNF–2022–0015).
Yuriy Stepanovich Volkov, Dr. Phys.-Math. Sci., Prof., Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia, e-mail: volkov@math.nsc.ru
Tugal Zhanlav, Dr. Phys.-Math. Sci., Prof., Academician, Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Ulaanbaatar, 13330 Mongolia, e-mail: tzhanlav@yahoo.com
Renchin-Ochir Mijiddorj, Dr. Phys.-Math. Sci., Mongolian National University of Education, Ulaanbaatar, 14191 Mongolia, e-mail: mijiddorj@msue.edu.mn
REFERENCES
1. Epstein E.S. On obtaining daily climatological values from monthly means. J. Climate, 1991, vol. 4, no. 3, pp. 365–368.
2. Killworth P.D. Time interpolation of forcing fields in ocean models. J. Phys. Oceanogr., 1996, vol. 26, no. 3, pp. 136–143.
3. Delhez É.J.M. A spline interpolation technique that preserve mass budget. Appl. Math. Lett., 2003, vol. 16, no. 1, pp. 17–26. https://doi.org/10.1016/S0893-9659(02)00139-8
4. Moghaddam B.P., Machado J.A.T., Behforooz H. An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos, Solitons & Fractals, 2017, vol. 102, pp. 354–360. https://doi.org/10.1016/j.chaos.2017.03.065
5. Ruiz-Arias J.A. Mean-preserving interpolation with splines for solar radiation modeling. Solar Energy, 2022, vol. 248, pp. 121–127. https://doi.org/10.1016/j.solener.2022.10.038
6. Schoenberg I.J. Splines and histograms. In: A. Meir, A. Sharma (eds.) Spline functions and approximation theory. Inter. Ser. Numer. Math., vol. 21. Basel, Birkhäuser, 1973, pp. 277–327.
https://doi.org/10.1007/978-3-0348-5979-0_13
7. Subbotin Yu.N. Extremal problems of functional interpolation and interpolation-in-the-mean splines. Proc. Steklov Inst. Math., 1977, vol. 138, pp. 127–185.
8. Kirsiaed E., Oja P., Shah G.W. Cubic spline histopolation. Math. Model. Anal., 2017, vol. 22, no. 4, pp. 514-527. https://doi.org/10.3846/13926292.2017.1329756
9. Behforooz H. Approximation by integro cubic splines. Appl. Math. Comput., 2006, vol. 175, no. 1, pp. 8–15. https://doi.org/10.1016/j.amc.2005.07.066
10. Zhanlav T., Mijiddorj R. Integro cubic splines and their approximation properties. Vestnik TvGU. Ser. Prikl. Mat., 2008, no. 10, pp. 65–77.
11. Zhanlav T., Mijiddorj R. Integro cubic splines on non-uniform grids and their properties. East Asian J. Appl. Math., 2021, vol. 11, no. 2, pp. 406–420. https://doi.org/10.4208/eajam.030920.251220
12. Lang F.-G., Xu X.-P. On integro quartic spline interpolation. J. Comput. Appl. Math., 2012, vol. 236, no. 17, pp. 4214–4226. https://doi.org/10.1016/j.cam.2012.05.017
13. Shali J.A., Haghighi A., Asghary N., Soleymani E. Convergence of integro quartic and sextic B-spline interpolation. Sahand Commun. Math. Anal., 2018, vol. 10, no. 1, pp. 97–108. https://doi.org/10.22130/scma.2017.27153
14. Behforooz H. Interpolation by integro quintic splines. Appl. Math. Comput., 2010, vol. 216, no. 2, pp. 364–367. https://doi.org/10.1016/j.amc.2010.01.009
15. Zhanlav T., Mijiddorj R. Integro quintic splines and their approximation properties. Appl. Math. Comput., 2014, vol. 231, pp. 536–543. https://doi.org/10.1016/j.amc.2014.01.043
16. Wu J., Zhang X. Integro quadratic spline interpolation. Appl. Math. Model., 2015, vol. 39, no. 10–11, pp. 2973–2980. https://doi.org/10.1016/j.apm.2014.11.015
17. Volkov Yu.S. Shape preserving conditions for integro quadratic spline interpolation in the mean. Proc. Steklov Inst. Math., 2022, vol. 319, suppl. 1, pp. S291–S297. https://doi.org/10.1134/S0081543822060256
18. Lang F.-G., Xu X.-P. On the superconvergence of some quadratic integro-splines at the mid-knots of a uniform partition. Appl. Math. Comput., 2018, vol. 338, pp. 507–514. https://doi.org/10.1016/j.amc.2018.06.046
19. Volkov Yu.S. Error bounds for integro quadratic spline interpolation in the mean and superconvergence points. Dokl. Math., 2025, vol. 111, no. 3, pp. 172–174. https://doi.org/10.1134/S106456242570019X
20. Zhanlav T., Mijiddorj R. Approximation by integro splines. Ulaanbaatar, Bit Press, 2018. ISBN: 978-99978-53-52-3 .
21. Zhanlav T., Volkov Yu.S., Mijiddorj R.-O. Applications of the Steklov smoothing method to numerical differentiation and construction of local quasi-interpolating splines. Sib. Adv. Math., 2025, vol. 35, no. 2, pp. 167–178.
https://doi.org/10.1134/S1055134425020087
22. Ahlberg J.H., Nilson E.N., Walsh J.L. The theory of splines and their applications. NY, London, Acad. Press, 1967, 284 p. Translated to Russian under the title Teoriya splaynov i yeyo prilozheniya, Moscow, Mir Publ., 1972, 316 p.
23. de Boor C. A practical guide to splines. New York, Spinger, 1978, 392 p. Translated to Russian under the title Prakticheskoye rukovodstvo po splaynam, Moscow, Izd-vo “Radio i svyaz”’, 1985, 304 p.
24. Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splain-funkcii [Methods of spline functions]. Moscow, Nauka Publ., 1980, 352 p.
25. Volkov Yu.S. Totally positive matrices in the methods for constructing interpolation splines of odd degree. Sib. Adv. Math., 2005., vol. 15, no. 4, pp. 96–125.
26. Volkov Yu.S. A new method for constructing cubic interpolating splines. Dokl. Math., 2002, vol. 65, no. 1, pp. 13–15.
27. Volkov Yu.S. A new method for constructing cubic interpolating splines. Comput. Math. Math. Phys., 2004, vol. 44, no. 2, pp. 215–224.
28. Volkov Yu.S. On complete interpolation spline finding via B-splines. Sib. Èlektron. Mat. Izv., 2008, vol. 5, pp. 334–338.
29. Volkov Yu.S. Obtaining a banded system of equations in complete spline interpolation problem via B-spline basis. Cent. Eur. J. Math., 2012, vol. 10, no. 1, pp. 352–356. https://doi.org/10.2478/s11533-011-0104-1
30. Zhanlav T. On the representation of interpolational cubic splines by B-splines. In: Metody splayn-funktsiy (vychislitel’nyye sistemy, vyp. 87) [Methods of spline functions (computing systems, vol. 87)]. Novosibirsk, 1981, pp. 3–10 (in Russian).
31. Zhanlav T. On boundary conditions for interpolation cubic splines. In: Metody splayn-funktsiy (vychislitel’nyye sistemy, vyp. 106) [Methods of spline functions (computing systems, vol. 106)]. Novosibirsk, 1984, pp. 25–28 (in Russian).
32. Behforooz G.H., Papamichael N. End conditions for cubic spline interpolation. J. Appl. Math., 1979, vol. 23, no. 3, pp. 355–366. https://doi.org/10.1093/imamat/23.3.355
Cite this article as: Yu.S. Volkov, T. Zhanlav, R.-O. Mijiddorj. On end conditions for integro quadratic spline interpolation in the mean. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 95–105 .